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Abstract

In the kernel clustering problem we are given a (large)

n × n symmetric positive semidefinite matrix A = (aij)

with
∑n

i=1

∑n
j=1 aij = 0 and a (small) k × k symmetric

positive semidefinite matrix B = (bij). The goal is to

find a partition {S1, . . . , Sk} of {1, . . . n} which maximizes∑k
i=1

∑k
j=1

(∑
(p,q)∈Si×Sj

apq

)
bij . We design a polynomial

time approximation algorithm that achieves an approxima-

tion ratio of R(B)2

C(B)
, where R(B) and C(B) are geometric

parameters that depend only on the matrix B, defined as

follows: if bij = 〈vi, vj〉 is the Gram matrix representation

of B for some v1, . . . , vk ∈ Rk then R(B) is the minimum ra-

dius of a Euclidean ball containing the points {v1, . . . , vk}.
The parameter C(B) is defined as the maximum over all

measurable partitions {A1, . . . , Ak} of Rk−1 of the quan-

tity
∑k

i=1

∑k
j=1 bij〈zi, zj〉, where for i ∈ {1, . . . , k} the vec-

tor zi ∈ Rk−1 is the Gaussian moment of Ai, i.e., zi =
1

(2π)(k−1)/2

∫
Ai

xe−‖x‖22/2dx. We also show that for every

ε > 0, achieving an approximation guarantee of (1−ε)R(B)2

C(B)

is Unique Games hard.

1 Introduction

Kernel Clustering [13] is a combinatorial optimization
problem which originates in the theory of machine learn-
ing. It is a general framework for clustering massive
statistical data so as to uncover a certain hypothe-
sized structure. The problem is defined as follows: let
A = (aij) be an n × n symmetric positive semidefinite
matrix which is usually normalized to be centered, i.e.,∑n

i=1

∑n
j=1 aij = 0. The matrix A is often thought of as

the correlation matrix of random variables (X1, . . . , Xn)
that measure attributes of certain empirical data, i.e.,
aij = E [XiXj ]. We are also given another symmetric
positive semidefinite k×k matrix B = (bij) which func-
tions as a hypothesis, or test matrix. Think of n as huge
and k as small. The goal is to cluster A so as to obtain
a smaller matrix which most resembles B. Formally,
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we wish to find a partition {S1, . . . , Sk} of {1, . . . , n} so
that if we write cij :=

∑
(p,q)∈Si×Sj

apq, i.e., we form a
k× k matrix C = (cij) by clustering A according to the
given partition, then the resulting clustered version of
A has the maximum correlation

∑k
i=1

∑k
j=1 cijbij with

the hypothesis matrix B. Equivalently, the goal is to
evaluate the number:
(1.1)

Clust(A|B) := max
σ:{1,...,n}→{1,...,k}

n∑

i=1

n∑

j=1

aijbσ(i)σ(j).

The strength of this generic clustering framework is
based in part on the flexibility of adapting the matrix
B to the problem at hand. Various particular choices
of B lead to well studied optimization problems, while
other specialized choices of B are based on statistical
hypotheses which have been applied with some empiri-
cal success. We refer to [13, 7] for additional background
and a discussion of specific examples.

In [7] we investigated the computational complexity
of the kernel clustering problem. Answering a question
posed in [13], we showed that this problem has a con-
stant factor polynomial time approximation algorithm.
We refer to [7] for more information on the best known
approximation guarantees. We also obtained hardness
results for kernel clustering under various complexity
assumptions. For example, we showed in [7] that when
B = I3 is the 3×3 identity matrix then a 16π

27 approxima-
tion guarantee for Clust(A|I3) is achievable, while any
approximation guarantee smaller than 16π

27 is Unique
Games hard. We will discuss the Unique Games Con-
jecture (UGC) presently. At this point it suffices to say
that the above statement is evidence that the hardness
threshold of the problem of approximating Clust(A|I3)
is 16π

27 , or more modestly that obtaining a polynomial
time algorithm which approximates Clust(A|I3) up to
a factor smaller than 16π

27 would require a major break-
through.

Another result proved in [7] is that when k ≥
3 and B is either the k × k identity matrix or is
spherical (i.e., bii = 1 for all i ∈ {1, . . . , k}) and
centered (i.e.,

∑k
i=1

∑k
j=1 bij = 0) then there is a



polynomial time approximation algorithm which, given
A, approximates Clust(A|B) to within a factor of
8π
9

(
1− 1

k

)
. We also presented in [7] a conjecture (called

the Propeller Conjecture) which we proved would imply
that 8π

9

(
1− 1

k

)
is the UGC hardness threshold when

B = Ik. We refer to [7] for more information on the
Propeller Conjecture, which at present remains open.

The above quoted result from [7] settles the prob-
lem of evaluating the UGC hardness threshold of the
following type of algorithmic task: given A and an hy-
pothesis matrix B which is guaranteed to belong to a
certain class of matrices (in our case centered and spher-
ical), approximate efficiently the number Clust(A|B).
Naturally this can be refined to a family of optimization
problems which depend on a fixed B: for each B, what
is the UGC hardness threshold of the problem of, given
A, approximating Clust(A|B)? In [7] we answered this
question only when B = I3, and for B = Ik assuming
the Propeller Conjecture, and asked about the case of
general B (we did give some B-dependent bounds in [7],
but they were not sharp for B 6= Ik for reasons that will
become clear presently). This is a natural question since
it makes sense to use the best possible polynomial time
algorithm if we know B in advance.

Here we answer the above question in full generality.
To explain our results we need to define two geometric
parameters which are associated to B. Since B is
symmetric and positive semidefinite we can find vectors
v1, . . . , vk ∈ Rk such that B is their Gram matrix,
i.e., bij = 〈vi, vj〉 for all i, j ∈ {1, . . . , k}. Let R(B)
be the smallest possible radius of a Euclidean ball in
Rk which contains {v1, . . . , vk} and let w(B) be the
center of this ball. Let C(B) be the maximum over
all partitions {A1, . . . , Ak} of Rk−1 into measurable
sets of the quantity

∑k
i=1

∑k
j=1 bij〈zi, zj〉, where for

i ∈ {1, . . . , k} the vector zi ∈ Rk−1 is the Gaussian
moment of Ai, i.e., zi = 1

(2π)(k−1)/2

∫
Ai

xe−‖x‖
2
2/2dx (this

maximum exists, as shown in Section 2). Our main
result is the following theorem1:

Theorem 1.1. For every symmetric positive semidefi-
nite k×k matrix B there exists a randomized polynomial
time algorithm which given an n × n symmetric posi-
tive semidefinite centered matrix A, outputs a number
Alg(A) such that

Clust(A|B) ≤ E [Alg(A)] ≤ R(B)2

C(B)
Clust(A|B).

1We refer to the discussion in Question 1 in Section 1.1
below which addresses the issue of computing efficiently good
approximate clusterings rather than approximating only the value
Clust(A|B).

On the other hand, assuming the Unique Games
Conjecture, no polynomial time algorithm approximates
Clust(A|B) to within a factor strictly smaller than
R(B)2

C(B) .

As an example of Theorem 1.1 for a particular
hypothesis matrix consider the following perturbation
of the previously studied case B = I3:

Bc :=




1 0 0
0 1 0
0 0 c


 ,

where c > 0 is a parameter. The problem of approx-
imating efficiently Clust(A|Bc) corresponds to parti-
tioning the rows of A into 3 sets S1, S2, S3 ⊆ {1, . . . , n}
and maximizing the sum of the total masses of A on
S1 × S1, S2 × S2, S3 × S3, where the parameter c can
be used to tune the weight of the set S3. This prob-
lem is not particularly important—we chose it just as
a concrete example for the sake of illustration. In Sec-
tion 6 we compute the parameters R(Bc), C(Bc) and
deduce that the UGC hardness threshold of the prob-
lem of computing Clust(A|Bc) equals 4πc(1+c)2

(1+2c)3 if c ≥ 1
2

and equals π(1+c)2

2+4c if c ≤ 1
2 . The change at c = 1

2 cor-
responds in a qualitative change in the best algorithm
for computing Clust(A|Bc)—we refer to Section 6 for
an explanation.

In the remainder of this introduction we will explain
the various ingredients of Theorem 1.1 (in particular the
Unique Games Conjecture), and the new ideas used in
its proof.

The main tool in the design of the algorithm
in Theorem 1.1 is a natural generalization of the
positive semidefinite Grothendieck inequality. In [4]
Grothendieck proved that there exists a universal con-
stant K > 0 such that for every n×n symmetric positive
semidefinite matrix A = (aij) we have2:

(1.2) max
x1,...,xn∈Sn−1

n∑

i=1

n∑

j=1

aij〈xi, xj〉

≤ K max
ε1,...,εn∈{−1,1}

n∑

i=1

n∑

j=1

aijεiεj .

2This inequality is sometimes written as

max
xi,yi∈Sn−1

n∑

i=1

n∑

j=1

aij〈xi, yj〉

≤ K max
εi,δi∈{−1,1}

n∑

i=1

n∑

j=1

aijεiδj ,

but it is easy (and standard) to verify that since A is positive
semidefinite this formulation coincides with (1.2).



The best constant K in (1.2) was shown in [11] to be
equal to π

2 . A natural variant of (1.2) is to replace the
numbers −1, 1 by general v1, . . . , vk ∈ Rk, namely one
might ask for the smallest constant K > 0 such that for
every symmetric positive semidefinite n × n matrix A
we have:

(1.3) max
x1,...,xn∈Sn−1

n∑

i=1

n∑

j=1

aij〈xi, xj〉

≤ K max
u1,...,un∈{v1,...,vk}

n∑

i=1

n∑

j=1

aij〈ui, uj〉.

In Section 3 we prove that (1.3) holds with K = 1
C(B) ,

where B = (〈vi, vj〉) is the Gram matrix of v1, . . . , vk,
and that this constant is sharp. This inequality is
proved along the following lines. Fix n unit vectors
x1, . . . , xn ∈ Sn−1. Let G = (gij) be a (k − 1) ×
n random matrix whose entries are i.i.d. standard
Gaussian random variables. Let A1, . . . , Ak ⊆ Rk−1

be a measurable partition of Rk−1 at which C(B) is
attained. Define a random choice of ui ∈ {v1, . . . , vk}
by setting ui = v` for the unique ` ∈ {1, . . . , k} such that
Gxi ∈ A`. The fact that (1.3) holds with K = 1

C(B) is
a consequence of the following fact, which we prove in
Section 3:
(1.4)

E




n∑

i=1

n∑

j=1

aij〈ui, uj〉

 ≥ C(B)

n∑

i=1

n∑

j=1

aij〈xi, xj〉.

The crucial point in the proof of (1.4) is the following
identity, proved in Lemma 3.1 as a corollary of the
closed-form formula for the Poison kernel of the Hermite
polynomials: for every two measurable subsets E, F ⊆
Rk−1 and any two unit vectors x, y ∈ Rn, we have

Pr [Gx ∈ E and Gy ∈ F ] = γk−1(E)γk−1(F )(1.5)

+〈x, y〉
〈∫

E

udγk−1(u),
∫

F

udγk−1(u)
〉

+
∞∑

`=2

〈
x⊗`, y⊗`

〉

∑

s∈(N∪{0})k−1s1+···+sk−1=`

αs(E)αs(F ),

for some real coefficients

{αs(E)}s∈(N∪{0})k−1 , {αs(F )}s∈(N∪{0})k−1 ⊆ R.

Here γk−1 denotes the standard Gaussian measure on
Rk−1. The product structure of the decomposition (1.5)
hints at the role of the fact that A is positive semidefi-
nite in the proof of (1.4)—the complete details appear
in Section 3.

Once the generalized Grothendieck inequality (3.18)
is obtained with K = 1

C(B) it is simple to design the
algorithm whose existence is claimed in Theorem 1.1,
which is based on semidefinite programming—this is
done in Section 4.

We shall now pass to an explanation of the hardness
result in Theorem 1.1. The Unique Games Conjecture,
posed by Khot in [6], is as follows. A Unique Game
is an optimization problem with an instance L =
L (G(V,W,E), n, {πvw}(v,w)∈E). Here G(V, W,E) is a
regular bipartite graph with vertex sets V and W and
edge set E. Each vertex is supposed to receive a label
from the set {1, . . . , n}. For every edge (v, w) ∈ E
with v ∈ V and w ∈ W , there is a given permutation
πvw : {1, . . . , n} → {1, . . . , n}. A labeling of the
Unique Game instance is an assignment ρ : V ∪ W →
{1, . . . , n}. An edge (v, w) is satisfied by a labeling
ρ if and only if ρ(v) = πvw(ρ(w)). The goal is to
find a labeling that maximizes the fraction of edges
satisfied (call this maximum OPT(L )). We think of
the number of labels n as a constant and the size
of the graph G(V,W,E) as the size of the problem
instance. The Unique Games Conjecture (UGC) asserts
that for arbitrarily small constants ε, δ > 0, there exists
a constant n = n(ε, δ) such that no polynomial time
algorithm can distinguish whether a Unique Games
instance L = L (G(V, W,E), n, {πvw}(v,w)∈W ) satisfies
OPT(L ) ≤ δ (soundness) or there exists a labeling such
that for 1 − ε fraction of the vertices v ∈ V all the
edges incident with v are satisfied (completeness)3. This
conjecture is (by now) a commonly used complexity
assumption to prove hardness of approximation results.
Despite several recent attempts to get better polynomial
time approximation algorithms for the Unique Game
problem (see the table in [3] for a description of known
results), the unique games conjecture still stands.

Our UGC hardness result follows the standard “dic-
tatorship test” approach which is prevalent in PCP
based hardness proofs, with a new twist which seems
to be of independent interest. Since the kernel cluster-
ing problem is concerned with an assignment of one of
k labels to each of the rows of the matrix A, the nat-
ural setting of our hardness proof is a dictatorship test
for functions on {1, . . . , k}n taking values in {1, . . . , k}
(this was already the case in [7]). The general “philos-
ophy” of such hardness proofs is to associate to every
such function a certain numerical parameter called the
“objective value” (which is adapted to the optimization

3This version of the UGC is not the standard version as stated
in [6], which only requires OPT(L ) ≥ 1− ε in the completeness.
However, it was shown in [8] that this seemingly stronger version
of the UGC actually follows from the original UGC—we will
require this stronger statement in our proofs.



problem at hand). The general scheme is to show that
for some numbers a, b > 0, if f depends on only one co-
ordinate (i.e., it is a “dictatorship”) then the objective
value of f is at least a, while if f does not have any
coordinate which is too influential then the objective
value of f is at most b + o(1) (the o(1) depends on the
notion of having no influential coordinates and its exact
form is not important for the purpose of this overview—
we refer to Section 5 for details). Once such a result is
proved, techniques from the theory of Probabilistically
Checkable Proofs can show that under a suitable com-
plexity theoretic assumption (in our case the UGC) no
polynomial time algorithm can achieve an approxima-
tion factor smaller than a

b .
Implicit to the above discussion is an underlying

product distribution on {1, . . . , k}n with respect to
which we measure the influence of variables. In [7]
the case of B = Ik was solved using the uniform
distribution on {1, . . . , k}. It turns out that in order
to prove the sharp hardness result in Theorem 1.1 we
need to use a non-uniform distribution which depends
on the geometry of B. Namely, writing B as a Gram
matrix bij = 〈vi, vj〉, recall that R(B) is the radius of
the smallest Euclidean ball containing {v1, . . . , vk} and
w(B) is the center of this ball. A simple separation
argument shows that w(B) is in the convex hull of
the vectors in {v1, . . . , vk} whose distance from w(B) is
exactly R(B). Writing w(B) as a convex combination
of these points and considering the coefficients of this
convex combination results in a probability distribution
on {1, . . . , k}. In our hardness proof we use the n-fold
product of (a small perturbation of) this probability
distribution as the underlying distribution on {1, . . . , k}
for our dictatorship test—see Figure 1 for a schematic
description of the situation described above. The
full details of this approach, including all the relevant
definitions, are presented in Section 5.

1.1 Open problems We end this introduction with
a statement of some open problems.

Question 1. Theorem 1.1 shows that the UGC hard-
ness threshold of the problem of computing Clust(A|B)
for a fixed hypothesis matrix B equals R(B)2

C(B) . It is nat-
ural to ask if there is also a polynomial time algorithm
which outputs a clustering of A whose value is within
a factor of R(B)2

C(B) of the optimal clustering. The is-
sue is that our rounding algorithm uses the partition
{A1, . . . , Ak} of Rk−1 at which C(B) is attained. In Sec-
tion 2 we study this optimal partition, and show that
it has a relatively simple structure rather than being
composed of general measurable sets: it corresponds to
cones which are induced by the faces of a simplex. This

R(B)

w(B)

Figure 1: The geometry of the test matrix B induces
a dictatorship test: the points above are the vectors
{v1, . . . , vk} ⊆ Rk such that B is their Gram matrix.
The ball depicted above is the smallest Euclidean ball
containing {v1, . . . , vk}, R(B) is its radius and w(B)
is its center. Then w(B) is in the convex hull of the
points in {v1, . . . , vk} which are at distance exactly R(B)
from w(B). Writing w(B) as a convex combination of
these boundary points yields a distribution over the la-
bels {1, . . . , k}. Our dictatorship test corresponds to se-
lecting a point from the n-fold power of this probability
space and comparing the behavior of a certain “objective
value” (defined in equation (5.31) below), which depends
only on the singleton Fourier coefficients, for dictator-
ships and for functions with low influences.

information allows us to compute efficiently a partition
which comes as close as we wish to the optimal parti-
tion when k is fixed, or grows slowly with n (to be safe
lets just say for the sake of argument that k ≈ log log n
works). We refer to Remark 3 for details. We currently
do not know if there is polynomial time rounding al-
gorithm when, say, k ≈ √

n. Given ε > 0, is there an
algorithm which, given A and B, computes Clust(A|B)
to within a factor of (1+ε)R(B)2

C(B) , and runs in time which
is polynomial in both n and k (and maybe even 1/ε)?

Question 2. We remind the reader that the Propeller
Conjecture remains open. This conjecture is about the
value of C(Ik) when k ≥ 4. It states that the partition
at which C(Ik) is attained is actually much simpler
than what one might initially expect: only 3 of the sets
have positive measure and they form a cylinder over a
planar 120◦ “propeller”. We refer to [7] for a precise
formulation and some evidence for the validity of the
Propeller Conjecture.



Question 3. The kernel clustering problem was stated
in [13] for matrices A which are centered. This makes
sense from the perspective of machine learning, but it
seems meaningful to also ask for the UGC hardness
threshold of the same problem when A is not assumed to
be centered. In the present paper we did not investigate
this case at all, and it seems that the exact UGC
hardness threshold when A is not necessarily centered
is not known for any interesting hypothesis matrix B.
Note that in [7] we showed that there is a constant
factor polynomial time approximation algorithm when
A is not necessarily centered: we obtained in [7] an
approximation guarantee of 1+ 3π

2 in this case, but this
is probably suboptimal.

2 Preliminaries on the parameter C(B)
Let B = (bij)k

i,j=1 ∈ Mk(R) be a k × k symmetric
positive semidefinite matrix. In what follows we fix k ≥
2 and the matrix B. We also fix vectors v1, . . . , vk ∈ Rk

for which bij = 〈vi, vj〉 for all i, j ∈ {1, . . . , k}.
Let γn denote the standard Gaussian measure on

Rn, i.e., the density of γn is 1
(2π)n/2 e−‖x‖

2
2/2. We denote

by Hk the Hilbert space L2(γn)⊕L2(γn)⊕· · ·⊕L2(γn) (k
times) and we consider the convex subset ∆k(γn) ⊆ Hk

give by:

(2.6) ∆k(γn) :=

{
(f1, . . . , fk) ∈ Hk :

∀j ∈ {1, . . . , k} fj ≥ 0 ∧
k∑

j=1

fj = 1

}
.

Define:

(2.7) C(n,B) := sup
(f1,...,fk)∈∆k(γn)

k∑

i=1

k∑

j=1

bij ·
〈∫

Rn

xfi(x)dγn(x),
∫

Rn

xfj(x)dγn(x)
〉

.

The following lemma is a variant of Lemma 3.1
in [7] (but see Remark 1 for an explanation of a subtle
difference). It simply states that the supremum in (2.7)
is attained at a k-tuple of functions which correspond
to a partition of Rn.

Lemma 2.1. There exist disjoint measurable sets
A1, . . . , Ak ⊆ Rn such that A1 ∪ A2 ∪ · · · ∪ Ak = Rn

and

k∑

i=1

k∑

j=1

bij ·
〈∫

Aj

xdγn(x),
∫

Aj

xdγn(x)

〉
= C(n,B).

Proof. Define Ψ : ∆k(γn) → R by

(2.8) Ψ(f1, . . . , fk) :=
k∑

i=1

k∑

j=1

bij

·
〈∫

Rn

xfi(x)dγn(x),
∫

Rn

xfj(x)dγn(x)
〉

.

We first observe that Ψ is a convex function. Indeed,
fix λ ∈ [0, 1] and (f1, . . . , fk), (g1, . . . , gk) ∈ ∆k(γn). De-
note zi :=

∫
Rn xfi(x)dγn(x) and wi :=

∫
Rn xgi(x)dγn(x)

for every i ∈ {1, . . . , k}. Then:

λΨ(f1, . . . , fk) + (1− λ)Ψ(g1, . . . , gk)
−Ψ(λf1 + (1− λ)g1, . . . , λfk + (1− λ)gk)

=
k∑

i=1

k∑

j=1

〈vi, vj〉
(
λ〈zi, zj〉+ (1− λ)〈wi, wj〉

−〈λzi + (1− λ)wi, λzj + (1− λ)wj〉
)

= λ(1− λ)
k∑

i=1

k∑

j=1

〈vi, vj〉〈zi − wi, zj − wj〉

= λ(1− λ)

∥∥∥∥∥
n∑

i=1

vi ⊗ (zi − wi)

∥∥∥∥∥

2

2

≥ 0.

Since ∆k(γn) is a weakly compact subset of Hk

and Ψ is weakly continuous and convex, Ψ attains
its maximum (which equals C(n,B)) on ∆k(γn) at
an extreme point of ∆k(γn), say at (f∗1 , . . . , f∗k ) ∈
∆k(γn). It follows that there exist measurable sets
A1, . . . , Ak ⊆ Rn which form a partition of Rn such
that (f∗1 , . . . , f∗k ) = (1A1 , . . . ,1Ak

) almost everywhere4,
as required.

Remark 1. In [7] a stronger result was proved when
B = Ik (the k × k identity matrix). Namely, using the
notation of the proof of Lemma 2.1 it was shown that
the maximum of Ψ on the larger convex set

∆̃k(γn) :=

{
(f1, . . . , fk) ∈ Hk :

∀j ∈ {1, . . . , k} fj ≥ 0 ∧
k∑

j=1

fj ≤ 1

}

4To see this standard fact observe that otherwise there would
be some A ⊆ Rn of positive measure, ε ∈ (0, 1/2), and distinct
i, j ∈ {1, . . . , k} such that fi1A, fj1A ∈ (ε, 1 − ε). But
(f∗1 , . . . , f∗k ) would then not be an extreme point since it is the
average of (g1, . . . , gk), (h1, . . . , hk) ∈ ∆k(γn) \ {(f∗1 , . . . , f∗k )},
where g` = h` = f∗` for ` ∈ {1, . . . , k}\{i, j} and gi = (f∗i +ε)1A+
f∗i 1Rn\A, hi = (f∗i −ε)1A+f∗i 1Rn\A, gj = (f∗j −ε)1A+f∗j 1Rn\A,
hj = (f∗j + ε)1A + f∗j 1Rn\A.



is also attained at (f∗1 , . . . , f∗k ) = (1A1 , . . . ,1Ak
) for

some measurable sets A1, . . . , Ak ⊆ Rn which form a
partition of Rn. It turns out that this stronger fact
helps to slightly simplify the proof of the corresponding
UGC hardness result. However, we do not know how
to prove this stronger statement for general B, so we
formulated the weaker statement in Lemma 2.1, at the
cost of needing to modify our proof of the UGC hardness
result for general B in Section 5.

The same extreme point argument as in the proof
of Lemma 2.1 shows that the maximum of Ψ on ∆̃k(γn)
is attained at (f∗1 , . . . , f∗k ) = (1A1 , . . . ,1Ak

) for some
disjoint measurable sets A1, . . . , Ak ⊆ Rn, but now it
does not follow that they necessarily cover all of Rn.
When B = Ik it can be shown as in [7] that these sets
do cover Rn. The same statement is true when B is
diagonal, as we now show by arguing as in the proof
in [7], but we do not know if it is true for general B.
So, assume that B is diagonal with positive diagonal
entries (b1, . . . , bk). Let A = Rn \ ⋃k

i=1 Ak. Denote
zj :=

∫
Aj

xdγn(x) and w =
∫

A
xdγn(x). Note that

w + z1 + · · · + zk = 0. If w = 0 then Ψ attains
its maximum on the partition {A ∪ A1, A2, . . . , Ak}, so
assume for the sake of contradiction that w 6= 0. For
every i ∈ {1, . . . , k} we have:

n∑

j=1

bj‖zj‖22 = Ψ(1A1 , . . . ,1Ak
)

≥ Ψ(1A1 , . . . ,1Ai−1 ,1A∪Ai ,1Ai+1 , . . . ,1Ak
)

=
∑

1≤j≤k
j 6=i

bj‖zj‖22 + bi‖zi + w‖22

=
n∑

j=1

bj‖zj‖22 + 2bi〈zi, w〉+ bi‖w‖22.

Thus 2〈zi, w〉+ ‖w‖22 ≤ 0, and if we sum this inequality
over i ∈ {1, . . . , k} while recalling that w = −∑k

i=1 zi

we see that (k − 2)‖w‖22 ≤ 0, which is a contradiction.
Note that for general B the same argument shows
that for all i ∈ {1, . . . , k} we have 2

∑k
j=1 bij 〈zj , w〉 +

bii‖w‖22 ≤ 0. These inequalities do not seem to lend
themselves to the same type of easy contradiction as in
the case of diagonal matrices.

The proof of the following lemma is an obvious
midification of the proof of Lemma 3.2 in [7].

Lemma 2.2. If n ≥ k − 1 then C(n,B) = C(k − 1, B).

Proof. The inequality C(n, B) ≥ C(k − 1, B) is easy
since for every (f1, . . . , fk) ∈ ∆k(γk−1) we can define(
f̃1, . . . f̃k

)
∈ ∆k(γn) by f̃j(x, y) = fj(x) (thinking here

of Rn as Rk−1 × Rn−k+1). Then for all j ∈ {1, . . . , k}
we have

∫
Rk−1 xfj(x)dγk−1(x) =

∫
Rn xf̃j(x)dγn(x), im-

plying that Ψ
(
f̃1, . . . f̃k

)
= Ψ (f1, . . . , fk).

In the reverse direction, by Lemma 2.1 there is
a measurable partition A1, . . . , Ak of Rn such that
if we define zj :=

∫
Aj

xdγn(x) ∈ Rn then we have
∑k

i=1

∑k
j=1 bij 〈zi, zj〉 = C(n,B). Note that

∑k
j=1 zj =

0. Hence the dimension of the subspace V :=
span{z1, . . . , zk} is d ≤ k − 1. Define g1, . . . , gk :
V → [0, 1] by gj(x) = γV ⊥

(
(Aj − x) ∩ V ⊥)

. Then
(g1, . . . , gk) ∈ ∆k(γV ), so that

C(k − 1, B) ≥ C(d,B)

≥
k∑

i=1

k∑

j=1

bij

〈∫

V

xgi(x)dγV (x),
∫

V

xgj(x)dγV (x)
〉

=
k∑

i=1

k∑

j=1

bij

〈∫

V

∫

V ⊥
1Ai

(x + y)xdγV (x)dγV ⊥(y),

∫

V

∫

V ⊥
1Aj (x + y)xdγV (x)dγV ⊥(y)

〉

=
k∑

i=1

k∑

j=1

bij

〈 ∫

Ai

ProjV (w)dγn(w),

∫

Aj

ProjV (w)dγn(w)

〉

=
k∑

i=1

k∑

j=1

bij 〈ProjV (zi), ProjV (zj)〉

=
k∑

i=1

k∑

j=1

bij 〈zi, zj〉 = C(n,B),

as required.

In light of Lemma 2.2 we define C(B) := C(k − 1, B).
We shall now prove an analogue of Lemma 3.3 in [7]
which gives structural information on the partition
{A1, . . . , Ak} of Rk−1 at which C(B) is attained. We
first recall some notation and terminology from [7].
Given distinct z1, . . . , zk ∈ Rk−1 and j ∈ {1, . . . , k}
define a set Pj(z1, . . . , zk) ⊆ Rk by

Pj(z1, . . . , zk) :=
{

x ∈ Rk : 〈x, zj〉 = max
i∈{1,...,k}

〈x, zi〉
}

.

Thus {Pj(z1, . . . , zk)}k
j=1 is a partition of Rk−1 which

we call the simplicial partition induced by z1, . . . , zk

(strictly speaking the elements of this partition are not
disjoint, but they intersect at sets of measure 0).



Lemma 2.3. Let A1, . . . , Ak ⊆ Rk−1 be a partition into
measurable sets such that if we set zj :=

∫
Aj

xdγk−1(x)
then

(2.9) C(B) =
k∑

i=1

k∑

j=1

bij 〈zi, zj〉 .

Assume also that this partition is minimal in the sense
that the number of elements of positive measure in this
partition is minimum among all the possible partitions
satisfying (2.9). Define

J := {j ∈ {1, . . . , k} : γk−1(Aj) > 0}

and set |J | = `. Then up to an orthogonal transforma-
tion {zj}j∈J ⊆ R`−1 and the vectors {zj}j∈J are non-
zero and distinct. Moreover, if we define {wj}j∈J ⊆
R`−1 by

(2.10) wj :=
∑

s∈J

bjszs,

then the vectors {wj}j∈J are distinct and for each j ∈ J
we have

(2.11) Aj = Pj

(
(wi)i∈J

)× Rk−`

up to sets of measure zero.

Proof. Since
∑

j∈J 1Aj = 1 almost everywhere we have∑
j∈J zj = 0. Thus the dimension of the span of {zj}j∈J

is at most |J |−1 = `−1, and by applying an orthogonal
transformation we may assume that {zj}j∈J ⊆ R`−1.
Also, for every distinct i, j ∈ J replace Ai by Ai ∪ Aj

and Aj by the empty set and obtain a partition of Rk−1

which contains exactly `−1 elements of positive measure
and for which we have (by the minimality of `):

C(B) >
∑

s,t∈J\{i,j}
bst 〈zs, zt〉

+2
∑

s∈J\{i,j}
bis 〈zs, zi + zj〉+ bii ‖zi + zj‖22

=
∑

s,t∈J

bst 〈zs, zt〉+ 2
∑

s∈J

(bis − bjs) 〈zs, zj〉

+(bii + bjj − 2bij) ‖zj‖22
= C(B) + 2 〈wi − wj , zj〉+ ‖vi − vj‖22 · ‖zj‖22,

where we used the fact that bst = 〈vs, vt〉. Thus

(2.12) 2 〈wi − wj , zj〉+ ‖vi − vj‖22 · ‖zj‖22 < 0,

and by symmetry we also have the inequality:

(2.13) 2 〈wj − wi, zi〉+ ‖vi − vj‖22 · ‖zi‖22 < 0.

It follows in particular from (2.12) and (2.13) that zi

and zj are non-zero and that wi 6= wj . Moreover if we
sum (2.12) and (2.13) we get that

2 〈wi − wj , zj − zi〉+ ‖vi − vj‖22
(‖zi‖22 + ‖zj‖22

)
< 0

which implies that zi 6= zj .
The above reasoning implies in particular that{

Pj

(
(wi)i∈J

)× Rk−`
}

j∈J
is a partition of Rk−1 (up to

pairwise intersections at sets of measure 0). Assume for
the sake of contradiction that these exist i ∈ J such that

γk−1

(
Ai \

(
Pi

(
(ws)s∈J

)× Rk−`
))

> 0.

Arguing as in the proof of Lemma 3.3 in [7] we see that
there exists ε > 0 and j ∈ J \{i} such that if we denote
E := {x ∈ Ai : 〈x, zj〉 ≥ 〈x, zi〉+ ε} then γk−1(E) > 0.

Define a partition Ã1, . . . Ãk of Rk−1 by

Ãr :=





Ar r /∈ {i, j}
Ai \ E r = i
Aj ∪ E r = j.

Then for w :=
∫

E
xdγk−1(x) we have

C(B) ≥
∑

s,t∈J

bst

〈∫

Ãs

xdγk−1(x),
∫

Ãt

xdγk−1(x)
〉

=
∑

s,t∈J\{i,j}
bst 〈zs, zt〉

+2
∑

s∈J\{i,j}
bis 〈zs, zi − w〉

+2
∑

s∈J\{i,j}
bjs 〈zs, zj + w〉

+2bij 〈zi − w, zj + w〉+ bii‖zi − w‖22
+bjj‖zj + w‖22

= C(B)− 2
∑

s∈J

bis 〈zs, w〉+ 2
∑

s∈J

bjs 〈zs, w〉

+(bii + bjj − 2bij) ‖w‖22
(2.10)
= C(B) + 2 〈wj − wi, w〉+ ‖vi − vj‖22 · ‖w‖22
≥ C(B) + 2

∫

E

(〈zj , x〉 − 〈zi, x〉) dγk−1(x)

≥ C(B) + 2εγk−1(E) > C(B),

a contradiction.

Remark 2. Note that we have the following non-trivial
identity as a corollary of Lemma 2.3 (and using the same
notation): For each i ∈ J ,

(2.14) zj =
∫

Pj

(
(wi)i∈J

) xdγ`−1(x),



where we recall that the wi are defined in (2.10).
This system of equalities seems to contain non-trivial
information on the structure of the partition at which
C(B) is attained. In future research it would be of
interest to exploit this information, though we have no
need for it for our present purposes.

Remark 3. Given B and ε > 0 we can estimate C(B)
up to an error of at most ε in constant time (which
depends only on B, k, ε). Moreover, we can compute
in constant time a conical simplicial partition of Rk−1

at which the value of Ψ is at least C(B) − ε. These
statements are a simple corollary of Lemma 2.3. Indeed,
all we have to do is to run over all choices of ` ∈
{1, . . . , k} and for each such ` construct an appropriate
net of z1, . . . , z` ∈ R`−1 of bounded size, and then check
each of the induced simplicial partitions of Rk−1 as
in (2.11) for the one which maximizes Ψ. To this end
we need some a priori bound on the length of zi: the
crude bound

‖zi‖2 =
∥∥∥∥
∫

Ai

xdγ`−1(x)
∥∥∥∥

2

≤
∫

R`−1
‖x‖2dγ`−1(x) ≤

√
`

will suffice. Fix δ > 0 which will be determined
momentarily. Let N be a δ-net in the Euclidean ball

of radius
√

` in R`−1. Then |N | ≤
(

3
√

`
δ

)`

.
Let A1, . . . , Ak be as in Lemma 2.3, i.e., the true

(minimal) partition at which C(B) is attained. Let
J , `, zi and wi be as in Lemma 2.3. For each i ∈
J find z′i ∈ N for which ‖zi − z′i‖2 ≤ δ. Define
w′i =

∑
s∈J bjsz

′
s. Then we have the crude bound

‖wi − w′i‖2 ≤ δ
∑k

s=1

∑k
t=1 |bst| := δ‖B‖1. We also

have the a priori bounds ‖wi‖2, ‖w′i‖2 ≤
√

`‖B‖1. By
compactness there exists δ = δ(ε, `, B) such that these
estimates imply that for all j ∈ J ,

∥∥∥∥∥zj −
∫

Pj

(
(w′i)i∈J

) xdγ`−1(x)

∥∥∥∥∥
2

(2.15)

=

∥∥∥∥∥
∫

Pj

(
(wi)i∈J

) xdγ`−1(x)−
∫

Pj

(
(w′i)i∈J

) xdγ`−1(x)

∥∥∥∥∥
2

≤ ε

2
√

`‖B‖1
.

(It is actually easy to give a concrete bound on the
required δ if so desired, but this is not important for

our purposes.) It follows from (2.15) that:

C(B) ≥
∑

s,t∈J

bst

〈∫

Ps

(
(w′i)i∈J

) xdγ`−1(x),

∫

Pt

(
(w′i)i∈J

) xdγ`−1(x)

〉

≥
∑

s,t∈J

bst 〈zs, zt〉 −
∑

s,t∈J

|bst| · ε

2
√

`‖B‖1
· 2
√

`

= C(B)− ε.

Note that the above integrals can be estimated effi-
ciently (polynomial time in k) with arbitrarily good
precision due to the fact that the simplicial cones
Pj

(
(w′i)i∈J

)
have an efficient membership oracle and the

Gaussian measure is log-concave. These are very crude
bounds that suffice for our algorithmic purposes when k
is fixed, but deteriorate exponentially with k. It would
be of interest to understand whether we can estimate
C(B) (and more importantly the associated partitions,
as they are used in our rounding procedure) in time
which is polynomial in k. Perhaps the identities (2.14)
can play a role in the design of such an efficient algo-
rithm, but we did not investigate this issue.

We end this section with a simple analytic inter-
pretation of the parameter C(B). Given a square inte-
grable function f : Rn → Rk its Rademacher projection
Rad(f) : Rn → Rk (see [10] for an explanation of this
terminology) is defined for x = (x1, . . . , xn) ∈ Rn as:

Rad(f)(x) =
n∑

i=1

(∫

Rn

yif(y)dγn(y)
)

xi.

Assume that f takes values in {v1, . . . , vk} ⊆ Rk

and define Ai = f−1(vi) for i ∈ {1, . . . , k}. Then
{A1, . . . , Ak} is a measurable partition of Rn. We also
have the identity:

Rad(f)(x) =
n∑

i=1




k∑

j=1

vj

∫

Aj

yidγn(y)


xi.

Thus

‖Rad(f)‖2L2(γn,Rk) =
∫

Rn

‖Rad(f)(x)‖22 dγn(x)(2.16)

=
n∑

i=1

∥∥∥∥∥∥

k∑

j=1

vj

∫

Aj

yidγn(y)

∥∥∥∥∥∥

2

2

=
n∑

i=1

k∑

j=1

k∑

`=1

〈vj , v`〉
(∫

Aj

yidγn(y)

) (∫

A`

yidγn(y)
)

=
k∑

j=1

k∑

`=1

bj`

〈∫

Aj

ydγn(y),
∫

Aj

ydγn(y)

〉
.



The identity (2.16) implies the following lemma:

Lemma 2.4. For every n ≥ k − 1 we have:

C(B) = max
f :Rn→{v1,...,vk}

‖Rad(f)‖2L2(γn,Rk) .

Recall that R(B) is defined as the radius of the smallest
ball in Rk which contains the set {v1, . . . , vk} and that
w(B) is the center of this ball. Lemma 2.4 implies the
following corollary:

Corollary 2.1. C(B) ≤ R(B)2.

Proof. Let {A1, . . . , Ak} be a partition of Rk−1

into measurable sets such that if we define zj =∫
Aj

xdγk−1(x) then

C(B) =
k∑

i=1

k∑

j=1

〈vi, vj〉 〈zi, zj〉(2.17)

=
k∑

i=1

k∑

j=1

〈vi − w(B), vj − w(B)〉 〈zi, zj〉

+2
k∑

i=1

〈vi, w(B)〉
〈

zi,

k∑

j=1

zj

〉

+‖w(B)‖22 ·
∥∥∥∥∥∥

k∑

j=1

zj

∥∥∥∥∥∥

2

2

.

Since
∑k

j=1 zj = 0 it follows from (2.16) and (2.17)

that for f : Rk−1 → {vi − w(B)}k
i=1 defined by f |Ai =

vi − w(B) we have:

C(B) = ‖Rad(f)‖2L2(γn,Rk)

(?)

≤ ‖f‖2L2(γn,Rk)

≤ ‖f‖2L∞(γn,Rk) = max
i∈{1,...,k}

‖vi − w(B)‖22 = R(B)2,

where in (?) we used the fact that Rad is an orthogonal
projection on the Hilbert space L2(γn,Rk).

3 Generalized positive semidefinite
Grothendieck inequalities

The purpose of this section is to prove the following
theorem, which as explained in the introduction, is
an extension of Grothendieck’s inequality for positive
semidefinite matrices.

Theorem 3.1. Let A = (aij) ∈ Mn(R) be an n × n
symmetric positive semidefinite matrix. Let v1, . . . , vk ∈
Rk be k ≥ 2 vectors and let B = (bij = 〈vi, vj〉) be the

corresponding Gram matrix. Then

(3.18) max
x1,...,xn∈Sn−1

n∑

i=1

n∑

j=1

aij〈xi, xj〉

≤ 1
C(B)

max
σ:{1,...,n}→{1,...,k}

n∑

i=1

n∑

j=1

aij〈vσ(i), vσ(j)〉.

We shall prove in Section 3.1 that the factor 1
C(B)

in (3.18) cannot be improved, even when in (3.18) A
is restricted to be centered, i.e.,

∑n
i=1

∑n
j=1 aij = 0.

The key tool in the proof of Theorem 3.1 is the
following lemma:

Lemma 3.1. Let {gij : i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}}
be i.i.d. standard Gaussian random variables and let
G = (gij) be the corresponding m×n random Gaussian
matrix. Fix two unit vectors x, y ∈ Sn−1 and two
measurable subsets E, F ⊆ Rm. Then:

Pr [Gx ∈ E ∧ Gy ∈ F ](3.19)
= γm(E)γm(F )

+〈x, y〉
〈∫

E

udγm(u),
∫

F

udγm(u)
〉

+
∞∑

`=2

〈
x⊗`, y⊗`

〉 ∑

s∈(N∪{0})m

s1+···+sm=`

αs(E)αs(F ),

for some real coefficients
{αs(E)}s∈(N∪{0})m , {αs(F )}s∈(N∪{0})m ⊆ R.

Proof. Denote r = 〈x, y〉. Let g, h ∈ R be inde-
pendent standard Gaussian random variables and let
g1, . . . , gm ∈ Rn be i.i.d. standard Gaussian random
vectors in Rn (i.e., they are independent and distributed
according to γn). Then for each i ∈ {1, . . . , m} the pla-
nar random vector (〈gi, x〉, 〈gi, y〉) ∈ R2 has the same
distribution as

(
g, rg +

√
1− r2h

) ∈ R2, and hence its
density is given for (u, v) ∈ R2 by:

fr(u, v) :=
1

2π
√

1− r2
· exp

(
−u2 − 2ruv + v2

2(1− r2)

)
.

The Hermite polynomials {Hk}∞k=0 are defined as:

Hk(t) := (−1)ket2 dk

dtk

(
e−t2

)

=
bk/2c∑
s=0

(−1)sk!
s!(k − 2s)!

(2t)k−2s.

The formula for the Poison kernel for Hermite polyno-
mials (see for example equation 6.1.13 in [1] or the dis-
cussion in [14]) says that

fr(u, v) =
e−(u2+v2)/2

2π

∞∑

k=0

rk

2kk!
Hk

(
u√
2

)
Hk

(
v√
2

)
.



Since the vector (Gx,Gy) ∈ R2m has the same distribu-
tion as the vector

(
(〈gi, x〉, 〈gi, y〉)

)m

i=1
, whose (planar)

entries are i.i.d. with density fr, we see that:

Pr [Gx ∈ E ∧ Gy ∈ F ]

=
∫

E×F

(
m∏

i=1

fr(ui, vi)

)
dudv

=
∫

E×F

e−(‖u‖22+‖v‖22)/2

(2π)m

(
m∏

i=1

( ∞∑

k=0

rk

2kk!
Hk

(
ui√
2

)
Hk

(
vi√
2

)))
dudv

=
∫

E×F

∑

s∈(N∪{0})m

rs1+···+sm

2s1+···+sm
∏m

i=1 si!
(

m∏

i=1

Hsi

(
ui√
2

))(
m∏

i=1

Hsi

(
vi√
2

))
dγm(u)dγm(v)

= γm(E)γm(F )

+〈x, y〉
〈∫

E

udγm(u),
∫

F

udγm(u)
〉

+
∞∑

`=2

〈
x⊗`, y⊗`

〉 ∑

s∈(N∪{0})m

s1+···+sm=`

αs(E)αs(F ),

where we used the fact that H0(t) = 1 and H1(t) = 2t,
and for every measurable subset W ⊆ Rm and s ∈
(N ∪ {0})m the notation

αs(W ) :=
1

2(s1+···+sm)/2
∏m

i=1

√
si!

·
∫

W

(
m∏

i=1

Hsi

(
ui√
2

))
dγm(u).

The proof of the identity (2.14) is complete.

Proof. [Proof of Theorem 3.1] Fix n unit vectors
x1, . . . , xn ∈ Sn−1. Let {A1, . . . , Ak} be a partition
of Rk−1 into measurable subsets. Let G be a random
Gaussian matrix as in Lemma 3.1 with m = k − 1. De-
fine a random assignment σ : {1, . . . , n} → {1, . . . , k} by
setting σ(i) to be the unique p ∈ {1, . . . , k} for which
Gxi ∈ Ap. Then for every i, j ∈ {1, . . . , n} we have

E
[〈

vσ(i), vσ(j)

〉]

=
k∑

p=1

k∑
q=1

〈vp, vq〉Pr [Gxi ∈ Ap ∧ Gxj ∈ Aq]

=
k∑

p=1

k∑
q=1

bpq Pr [Gxi ∈ Ap ∧ Gxj ∈ Aq] .

We may therefore apply Lemma 3.1 to deduce that:

E




n∑

i=1

n∑

j=1

aij

〈
vσ(i), vσ(j)

〉



=




n∑

i=1

n∑

j=1

aij




k∑
p=1

k∑
q=1

bpqγk−1(Ap)γk−1(Aq)

+




n∑

i=1

n∑

j=1

aij 〈xi, xj〉



k∑
p=1

k∑
q=1

bpq

〈∫

Ap

xdγk−1(x),
∫

Aq

xdγk−1(x)

〉

+
∞∑

`=2




n∑

i=1

n∑

j=1

aij

〈
x⊗`

i , x⊗`
j

〉



·
∑

s∈(N∪{0})m

s1+···+sm=`

k∑
p=1

k∑
q=1

bpqαs(Ap)αs(Aq)

≥



n∑

i=1

n∑

j=1

aij 〈xi, xj〉



k∑
p=1

k∑
q=1

bpq

〈∫

Ap

xdγk−1(x),
∫

Aq

xdγk−1(x)

〉
,

where we used the fact that both A and B are posi-
tive semidefinite. It thus follows that there exists an
assignment σ : {1, . . . , n} → {1, . . . , k} for which

n∑

i=1

n∑

j=1

aij

〈
vσ(i), vσ(j)

〉 ≥



n∑

i=1

n∑

j=1

aij 〈xi, xj〉



·
k∑

p=1

k∑
q=1

bpq

〈∫

Ap

xdγk−1(x),
∫

Aq

xdγk−1(x)

〉
,

and since this is true for all measurable partitions
{A1, . . . , Ak} of Rk−1 we deduce that there exists an
assignment σ : {1, . . . , n} → {1, . . . , k} for which:

n∑

i=1

n∑

j=1

aij

〈
vσ(i), vσ(j)

〉 ≥ C(B)
n∑

i=1

n∑

j=1

aij 〈xi, xj〉 ,

as required.

3.1 Optimality The purpose of this section is to
show that Theorem 3.1 is sharp:

Theorem 3.2. Let v1, . . . , vk ∈ Rk be k ≥ 2 vectors
and let B = (bij = 〈vi, vj〉) be the corresponding Gram
matrix. Assume that K > 0 is a constant such that



for every n ∈ N and every centered symmetric positive
semidefinite matrix A = (aij) ∈ Mn(R) we have:

(3.20) max
x1,...,xn∈Sn−1

n∑

i=1

n∑

j=1

aij〈xi, xj〉

≤ K max
σ:{1,...,n}→{1,...,k}

n∑

i=1

n∑

j=1

aij〈vσ(i), vσ(j)〉.

Then K ≥ 1
C(B) .

Proof. The proof consists of a discretization of a con-
tinuous example. The discretization step is somewhat
tedious, but straightforward. We will start with a
presentation of the continuous example. Fix m ∈ N
and let g, h ∈ Rm be independent standard gaussian
random vectors. Since (‖g‖2, ‖h‖2) is independent of(

g
‖g‖2 , h

‖h‖2

)
we have:

∫

Rm×Rm

〈x, y〉 ·
〈

x

‖x‖2 ,
y

‖y‖2

〉
dγm(x)dγm(y)(3.21)

= E

[
‖g‖2 · ‖h‖2

〈
g

‖g‖2 ,
h

‖h‖2

〉2
]

= E [‖g‖2 · ‖h‖2] · E
[〈

g

‖g‖2 ,
h

‖h‖2

〉2
]

= E [‖g‖2]2 E
[

g2
1

‖g‖22

]

= E [‖g‖2]2 1
m

m∑

i=1

E
[

g2
i

‖g‖22

]

=
1
m
E [‖g‖2]2 ,

where we used the rotation invariance of the distribution
of h.

The distribution of ‖g‖22 is the χ2 distribution with
m degrees of freedom, and therefore its density at u > 0
equals 1

2m/2Γ(m/2)
u

m
2 −1e−u/2. It follows that

(3.22)

E [‖g‖2] =
1

2m/2Γ(m/2)

∫ ∞

0

√
u · um

2 −1e−u/2du

=
√

2 · Γ
(

m+1
2

)

Γ
(

m
2

) ≥ √
m

(
1−O

(
1
m

))
,

where the last step is an application of Stirling’s for-
mula. Plugging (3.22) into (3.21) we see that:

(3.23)
∫

Rm×Rm

〈x, y〉 ·
〈

x

‖x‖2 ,
y

‖y‖2

〉
dγm(x)dγm(y)

≥ 1−O

(
1
m

)
.

Now, assuming that m ≥ k− 1, for every f : Rm →
{v1, . . . , vk} we have

∫

Rm×Rm

〈x, y〉 · 〈f(x), f(y)〉 dγm(x)dγm(y)(3.24)

=
∥∥∥∥
∫

Rm

x⊗ f(x)dγm(x)
∥∥∥∥

2

2

=

∥∥∥∥∥
m∑

i=1

ei ⊗
(∫

Rm

xif(x)dγm(x)
)∥∥∥∥∥

2

2

= ‖Rad(f)‖2L2(γm,Rk) ≤ C(B),

where we used Lemma 2.4 (and here e1, . . . , em is the
standard basis or Rm).

We shall now perform a simple discretization argu-
ment to conclude the proof of Theorem 3.2. Fix ε > 0
and M ∈ N. Let F be the set of all axis parallel
cubes in [−εM, εM ]m which are a product of m inter-
vals whose endpoints are consecutive integer multiples
of ε in [−M, M ]. Thus |F | = (2M)m and each Q ∈ F
has volume εm. For Q ∈ F let zQ be the center of Q.
For every P, Q ∈ F define

aPQ := ε2me−
‖zP ‖22+‖zQ‖22

2 〈zP , zQ〉 .
By our assumption (3.20) there is an assignment σ :
F → {1, . . . , k} such that

(3.25)
∑

P,Q∈F

aPQ

〈
zP

‖zP ‖2 ,
zQ

‖zQ‖2

〉

≤ K
∑

P,Q∈F

aPQ

〈
vσ(P ), vσ(Q)

〉
.

We shall now use the following straightforward (and
crude) estimates:

∣∣∣∣∣
∫

Rm×Rm

〈x, y〉
〈

x

‖x‖2 ,
y

‖y‖2

〉
dγm(x)dγm(y)

−
∑

P,Q∈F

aPQ

〈
zP

‖zP ‖2 ,
zQ

‖zQ‖2

〉∣∣∣∣∣∣

≤
∑

P,Q∈F

∫

P×Q

∣∣∣∣e−
‖zP ‖22+‖zQ‖22

2 〈zP , zQ〉
〈

zP

‖zP ‖2 ,
zQ

‖zQ‖2

〉
− e−

‖x‖22+‖y‖22
2 〈x, y〉

·
〈

x

‖x‖2 ,
y

‖y‖2

〉∣∣∣∣ dxdy

+

∣∣∣∣∣
∫

(Rm×Rm)\([−εM,εM ]m×[−εM,εM ]m)

〈x, y〉

·
〈

x

‖x‖2 ,
y

‖y‖2

〉
dγm(x)dγm(y)

∣∣∣∣ := A.



Now,

A ≤ O(1)
√

mε
(√

mMε
)3

·
∑

P,Q∈F

∫

P×Q

e−
‖x‖22+‖y‖22

2 dxdy + O(1)m2e−
(εM)2

4

≤ O(1)
√

mε
(√

mMε
)3 + O(1)m2e−

(εM)2

4 .

We shall require in what follows that εM = 2m. Hence,
using (3.23) we deduce that:
(3.26)

∑

P,Q∈F

aPQ

〈
zP

‖zP ‖2 ,
zQ

‖zQ‖2

〉
≥ 1−O

(
m5ε +

1
m

)
.

On the other hand, define f : Rm → {v1, . . . , vk} by

f(x) =
{

vσ(Q) x ∈ Q ∈ F ,
v1 x /∈ [−εM, εM ]m.

Observe that by symmetry
∫

(Rm×Rm)\([−εM,εM ]m×[−εM,εM ]m)

〈x, y〉

· 〈f(x), f(y)〉 dγm(x)dγm(y) = 0,

and therefore a similar crude estimate yields:
∣∣∣∣∣
∫

Rm×Rm

〈x, y〉 · 〈f(x), f(y)〉 dγm(x)dγm(y)(3.27)

−
∑

P,Q∈F

aPQ

〈
vσ(P ), vσ(Q)

〉
∣∣∣∣∣

≤
∑

P,Q∈F

∫

P×Q

∣∣∣∣e−
‖x‖22+‖y‖22

2 〈x, y〉

−e−
‖zP ‖22+‖zQ‖22

2 〈zP , zQ〉
∣∣∣∣
∣∣〈vσ(P ), vσ(Q)

〉∣∣ dxdy

≤ O
(
m5ε

)
max

i∈{1,...,k}
‖vi‖22.

Choosing ε = m−6 (and thus M = 2m7), and combin-
ing (3.27) with (3.24) and (3.26), yields in combination
with (3.25) the bound:

1−O

(
1
m

)
≤ K

(
C(B) + O

(
1
m

)
max

i∈{1,...,k}
‖vi‖22

)
.

Letting m →∞ concludes the proof of Theorem 3.2.

4 A sharp approximation algorithm for kernel
clustering

Let A = (aij) ∈ Mn(R) be a centered symmetric
positive semidefinite matrix and let B = (bij) ∈ Mk(R)
be a symmetric positive semidefinite matrix. Our

goal is to design a polynomial time algorithm which
approximates the value:

Clust(A|B) = max
σ:{1,...,n}→{1,...,k}

n∑

i=1

n∑

j=1

aijbσ(i)σ(j).

We proceed as follows. We first find vectors v1, . . . , vk ∈
Rk such that bij = 〈vi, vj〉 for all i, j ∈ {1, . . . , k}. This
can be done in polynomial time (Cholesky decompo-
sition). Let R(B) be the minimum radius of the Eu-
clidean ball in Rk that contains {v1, . . . , vk} and let
w(B) be the center of this ball. Both R(B) and w(B)
can be efficiently computed by solving an appropriate
semidefinite program.

We now use semidefinite programming to compute
the value:

SDP(A|B) := max

{
n∑

i=1

n∑

j=1

aij 〈xi, xj〉 :(4.28)

x1, . . . , xn ∈ Rn ∧ ‖xi‖2 ≤ 1 ∀i ∈ {1, . . . , n}
}

= max





n∑

i=1

n∑

j=1

aij 〈xi, xj〉 : x1, . . . , xn ∈ Sn−1



 ,

where the last equality in (4.28) holds since the function
(x1, . . . , xn) 7→ ∑n

i=1

∑n
j=1 aij 〈xi, xj〉 is convex (by

virtue of the fact that A is positive semidefinite). We
claim that

(4.29)
Clust(A|B)

R(B)2
≤ SDP(A|B) ≤ Clust(A|B)

C(B)
,

which implies that if we output the number
R(B)2Clust(A|B) we will obtain a polynomial time al-
gorithm which approximates Clust(A|B) up to a factor
of R(B)2

C(B) .
To verify (4.29) let x∗1, . . . , x

∗
n ∈ Sn−1 and σ∗ :

{1, . . . , n} → {1, . . . , k} be such that

SDP(A|B) =
n∑

i=1

n∑

j=1

aij

〈
x∗i , x

∗
j

〉
,

and

Clust(A|B) =
n∑

i=1

n∑

j=1

aijbσ∗(i)σ∗(j).

Write (aij)n
i,j=1 = (〈ui, uj〉)n

i,j=1 for some
u1, . . . , un ∈ Rn. The assumption that A is centered
means that

∑n
i=1 ui = 0. The right-hand side of in-

equality in (4.29) is simply a restatement of Theo-
rem 3.1. The left-hand side inequality (4.29) follows



from the fact that vσ∗(i)−w(B)

R(B) has norm at most 1 for
all i ∈ {1, . . . , n}. Indeed, these norm bounds imply
that:

SDP(A|B)

≥
n∑

i=1

n∑

j=1

aij

〈
vσ∗(i) − w(B)

R(B)
,
vσ∗(j) − w(B)

R(B)

〉

=
1

R(B)2

n∑

i=1

n∑

j=1

aij

〈
vσ∗(i), vσ∗(j)

〉

− 2
R(B)2

n∑

i=1

〈
w(B), vσ∗(i)

〉
〈

ui,

n∑

j=1

uj

〉

+
‖w(B)‖22
R(B)2

n∑

i=1

n∑

j=1

aij

=
Clust(A|B)

R(B)2
.

This completes the proof that our algorithm ap-
proximates efficiently the number Clust(A|B), but does
not address the issue of how to efficiently compute an
assignment σ : {1, . . . , n} → {1, . . . , k} for which the in-
duced clustering of A has the required value. An inspec-
tion of the proof of Theorem 3.1 shows that the issue
here is to find efficiently a conical simplicial partition
A1, . . . , Ak of Rk−1 at which C(B) is almost attained,
say

k∑
p=1

k∑
q=1

bpq

〈∫

Ap

xdγk−1(x),
∫

Aq

xdγk−1(x)

〉

≥ (1− ε)C(B).

Once this partition is computed, using the notation in
the proof of Theorem 3.1 we have a randomized algo-
rithm which outputs an assignment σ : {1, . . . , n} →
{1, . . . , k} such that

Eσ




n∑

i=1

n∑

j=1

aijbσ(i)σ(j)


 ≥ (1− ε)C(B)

R(B)2
Clust(A|B).

Note that there is no difficulty to compute σ efficiently
once the partition {A1, . . . , Ak} is given, since these sets
are simplicial cones. The issue with efficiency here is
how to compute this partition in polynomial time. As
we discussed in Remark 3, this can be done when k is
fixed (or grows very slowly with n), but we do not know
how to do this when, say, k =

√
n.

5 Matching Unique Games hardness

In this section we show that for a fixed positive semi-
definite matrix B, approximating Clust(A|B) within

a ratio strictly smaller than R(B)2

C(B) is Unique Games
hard. We will study functions f : {1, . . . , k}n → R
and their Fourier spectrum at the first level. A novel
feature of our proof is that our Fourier analysis will be
carried out with respect to a distribution on {1, . . . , k}
that is not necessarily uniform. In fact, the choice of
the distribution itself is dictated by the matrix B as
described in Section 5.1.

5.1 Choosing a special probability distribution
on {1, . . . , k}

Fact 5.1. Let B = (bij) be a k × k symmetric positive
semi-definite matrix and bij = 〈vi, vj〉 be its Gram
representation, where v1, . . . , vk are vectors (w.l.o.g.) in
Rk. Let R(B) be the minimum radius of a Euclidean
ball containing all these vectors, and w(B) be the center
of this ball. Then w(B) is a convex combination of the
vi’s that are on the boundary of the ball. In other words,
there exist non-negative coefficients p(1), . . . , p(k) such
that

∑k
i=1 p(i) = 1, w(B) =

∑k
i=1 p(i)vi and p(i) 6= 0

only if ‖vi − w(B)‖2 = R(B).

Fact 5.1 is well known (see for example the proof of
Proposition 1.13 in [2]). Its proof is a simple separation
argument. Indeed, define J := {j ∈ {1, . . . , k} :
‖vj − w(B)‖2 = R(B)} and let K be the convex hull
of {vj}j∈J . Assume for the sake of contradiction that
w(B) /∈ K. Then there would be a hyperplane H
separating w(B) from K. Moving w(B) a little in the
direction of H would turn the equalities on J to strict
inequalities, while preserving the strict inequalities off
J . This contradicts the minimality of R(B).

We intend to use the probability distribution
(p(1), . . . , p(k)) from fact 5.1. However, for technical
reasons, we need the probability mass for each atom
to be non-zero, and therefore, we will use a very small
perturbation of this distribution. Towards this end we
define µ(i) = (1 − β)p(i) + β

k for every i ∈ {1, . . . , k}.
The value of β > 0 is chosen to be sufficiently small as
in the following lemma.

Lemma 5.1. Fix any ε > 0 and the matrix B. Then
for a sufficiently small β = β(ε,B) > 0,

(5.30)
k∑

i=1

µ(i)

∥∥∥∥∥∥
vi −

k∑

j=1

µ(j)vj

∥∥∥∥∥∥

2

2

≥ R(B)2 − ε.

Proof. Note that if β = 0, then µ(i) = p(i) for all



i ∈ {1, . . . , k}, and

k∑

i=1

µ(i)

∥∥∥∥∥∥
vi −

k∑

j=1

µ(j)vj

∥∥∥∥∥∥

2

2

=
k∑

i=1

p(i)‖vi − w(B)‖22 = R(B)2,

since p(i) 6= 0 only if ‖vi − w(B)‖2 = R(B). Thus by
continuity for sufficiently small β the inequality (5.30)
holds. For concreteness we also give a direct argument
which gives a reasonable bound on β. Assume that
β < 1

7 . Then, using the fact that µ ≥ (1 − β)p (point-
wise), we see that:




k∑

i=1

µ(i)

∥∥∥∥∥∥
vi −

k∑

j=1

µ(j)vj

∥∥∥∥∥∥

2

2




1/2

≥
√

1− β

·



k∑

i=1

p(i)

∥∥∥∥∥∥
(1− β)


vi −

k∑

j=1

p(j)vj




+
β

k

k∑

j=1

(vi − vj)

∥∥∥∥∥∥

2

2




1/2

≥
√

1− β

(
k∑

i=1

p(i) ‖(1− β)(vi − w(B))‖22
)1/2

−
√

1− β




k∑

i=1

p(i)

∥∥∥∥∥∥
β

k

k∑

j=1

(vi − vj)

∥∥∥∥∥∥

2

2




1/2

≥ (1− β)3/2R(B)

−β
√

1− β




k∑

i=1

p(i)
1
k

k∑

j=1

‖vi − vj‖22




1/2

≥ (1− β)3/2R(B)− β
√

1− β max
i,j∈{1,...,k}

‖vi − vj‖2

≥
√

1− β (1− 3β)R(B)

≥
√

1− 7β ·R(B),

where in the penultimate inequality we used the trivial
fact that maxi,j∈{1,...,k} ‖vi − vj‖2 ≤ 2R(B). Thus we
can take β = ε

7R(B)2 to ensure the validity of (5.30).

Henceforth we fix the probability space (Ω =
{1, . . . , k}, µ). Let U = (uij) be a k × k orthogonal
matrix such that u1j =

√
µ(j) for all j ∈ {1, . . . , k}

(such an orthogonal matrix exists since this ensures
that

∑k
j=1 u2

1j = 1). Now define random variables

X1, . . . , Xk : {1, . . . , k} → R by Xi(j) = uij√
µ(j)

(here is

one place where we need the atoms of µ to have positive
mass. We will also use this fact to allow for the appli-
cation of the result of [9] in the proof of Theorem 5.1
below). Then by design X1 is the constant 1 function,
and for all i, j ∈ {1, . . . , k} we have:

k∑

`=1

µ(`)Xi(`)Xj(`) =
k∑

`=1

ui`uj` = (UU t)ij = δij ,

where δij is the Kronecker delta. Similarly:

k∑

`=1

X`(i)X`(j) =
1√

µ(i)µ(j)

k∑

`=1

u`iu`j

=
(U tU)ij√
µ(i)µ(j)

=
δij

µ(i)
.

By relabeling these random variables (for the sake for
simplicity of later notation) we thus obtain the following
lemma:

Lemma 5.2. There exist random variables
X0, X1, . . . , Xk−1 on Ω such that:

• X0 ≡ 1.

• For i, j ∈ {0, . . . , k − 1} we have

Eµ[XiXj ] =
{

0 if i 6= j,
1 if i = j.

• For every ω, ω′ ∈ Ω we have

k−1∑

i=0

Xi(ω)Xi(ω′) =
{

0 if ω 6= ω′,
1

µ(ω) if ω = ω′.

5.2 Dictatorships vs. functions with small
influences In this section we will associate to every
function from {1, . . . , k}n to

∆k :=

{
x ∈ Rk : xi ≥ 0 ∀ i ∈ {1, . . . , k},

k∑

i=1

xi = 1

}

a numerical parameter, or “objective value”. We will
show that the value of this parameter for functions
which depend only on a single coordinate (i.e. dicta-
torships) differs markedly from its value on functions
which do not depend significantly on any particular co-
ordinate (i.e. functions with small influences). This step
is an analog of the “dictatorship test” which is prevalent
in PCP based hardness proofs.

We begin with some notation and preliminaries on
Fourier-type expansions. For any function f : Rn → ∆k



we write f = (f1, f2, . . . , fk) where fi : Rn → [0, 1] and∑k
i=1 fi = 1. With this notation we have

C(B) = sup
f :Rk−1→∆k

k∑

i=1

k∑

j=1

bij

·
〈∫

Rk−1
xfi(x)dγk−1(x),

∫

Rk−1
xfj(x)dγk−1(x)

〉

where C(B) is as in Section 2. We have already seen
that the supremum above is actually attained. Also
C(B) remains the same if the supremum is taken over
functions over Rn with n ≥ k−1, i.e. for every n ≥ k−1,

C(B) = sup
f :Rn→∆k

k∑

i=1

k∑

j=1

bij

·
〈∫

Rn

xfi(x)dγn(x),
∫

Rn

xfj(x)dγn(x)
〉

.

Let (Ω = {1, . . . , k}, µ) be the probability space as
chosen in Section 5.1. Let (Ωn, µn) be the associated
product space. We will be analyzing functions f :
Ωn → ∆k (and more generally into Rk). As in Lemma
5.2, fix a basis of orthonormal random variables on Ω
where one of them is the constant 1 function, that is
{X0 ≡ 1, X1, . . . , Xk−1}. Then any function f : Ω → R
can be written as a linear combination of the Xi’s.

In order to analyze functions f : Ωn → R, we
let X = (X1,X2, . . . ,Xn) be an “ensemble” of ran-
dom variables where for i ∈ {1, . . . , n} we write
Xi = {Xi,0, Xi,1, . . . , Xi,k−1}, and for every i, {Xi,j}k−1

j=0

are independent copies of the {Xj}k−1
j=0 . Any σ =

(σ1, σ2, . . . , σn) ∈ {0, 1, 2, . . . , k − 1}n will be called a
multi-index. We shall denote by |σ| the number on non-
zero entries in σ. Each multi-index defines a monomial

xσ :=
∏

i∈{1,...,n}
σi 6=0

xi,σi

on a set of n(k − 1) indeterminates {xij | i ∈
{1, . . . , n}, j ∈ {1, 2, . . . , k − 1}}, and also a random
variable Xσ : Ωn → R as

Xσ(ω) :=
n∏

i=1

Xi,σi(ωi).

The random variables {Xσ}σ form an orthonormal basis
for the space of functions f : Ωn → R. Thus, every such
f can be written uniquely as (the “Fourier expansion”)

f =
∑

σ

f̂(σ)Xσ, f̂(σ) ∈ R.

We denote the corresponding multi-linear polynomial
as Qf =

∑
σ f̂(σ)xσ. One can think of f as the

polynomial Qf applied to the ensemble X , i.e. f =
Qf (X ). Of course, one can also apply Qf to any other
ensemble, and specifically to the Gaussian ensemble G =
(G1,G2, . . . ,Gn) where Gi = {Gi,0 ≡ 1, Gi,1, . . . , Gi,k−1}
and Gi,j , i ∈ {1, . . . , n}, j ∈ {1, . . . , k − 1} are i.i.d.
standard Gaussians. Define the influence of the i’th
variable on f as

Infi(f) :=
∑

σi 6=0

f̂(σ)2.

Roughly speaking, the results of [12, 9] say that if
f : Ωn → [0, 1] is a function all of whose influences
are small, then f = Qf (X ) and Qf (G) are almost
identically distributed, and in particular, the values of
Qf (G) are essentially contained in [0, 1]. Note that
Qf (G) is a random variable on the probability space
(Rn(k−1), γn(k−1)).

Consider functions f : Ωn → ∆k. We write f =
(f1, f2, . . . , fk) where fi : Ωn → [0, 1] with

∑k
i=1 fi = 1.

Each fi has a unique representation (along with the
corresponding multi-linear polynomial)

fi =
∑

σ

f̂i(σ)Xσ, Qi := Qfi =
∑

σ

f̂i(σ)xσ.

We shall define an objective function OBJ(f) that
is a positive semidefinite quadratic form on the table of
values of f which corresponds to a centered symmetric
positive semidefinite bilinear form. Then we analyze the
value of this objective function when f is a “dictator-
ship” versus when f has all low influences.

The objective value For a function f : Ωn → ∆k (or
more generally, f : Ωn → Rk) define

(5.31) OBJ(f) :=
k∑

i=1

k∑

j=1

bij


 ∑

σ: |σ|=1

f̂i(σ)f̂j(σ)


 .

Note that there are n(k − 1) multi-indices σ such that
|σ| = 1.

The objective value for dictatorships For ` ∈
{1, . . . , n} we define a dictatorship function fdict,` :
Ωn → ∆k as follows. The range of the function is limited
to only k points in ∆k, namely the points {e1, e2, . . . , ek}
where ei is a vector with ith coordinate 1 and all other
coordinates zero.

(5.32) fdict,`(ω) := ei if ω` = i.



In other words, when one writes fdict,` =
(f1, f2, . . . , fk), for i ∈ {1, . . . , k}, fi is {0, 1}-valued
and fi(ω) = 1 if and only if ω` = i. The Fourier
expansion of fi is

fi(ω) = µ(i)
∑

σ: σj=0 ∀j 6=`

Xσ`
(i) Xσ(ω).(5.33)

Indeed, the right hand side of (5.33) equals

µ(i)
∑

0≤σ`≤k−1

Xσ`
(i) Xσ`

(ω`) =
{

1 if ω` = i,
0 otherwise.

(See Lemma 5.2.)
Thus,

OBJ
(
fdict,`

)
=

k∑

i=1

k∑

j=1

bij


 ∑

σ: |σ|=1

f̂i(σ)f̂j(σ)


(5.34)

=
k∑

i=1

k∑

j=1

bij

(
k−1∑
r=1

µ(i)Xr(i)µ(j)Xr(j)

)

=
k∑

i=1

k∑

j=1

bij · µ(i)µ(j)

(
k−1∑
r=0

Xr(i)Xr(j)− 1

)

=
∑

i,j∈{1,...,k}
i 6=j

〈vi, vj〉 · µ(i)µ(j)(−1)

+
k∑

i=1

〈vi, vi〉 · µ(i)2
(

1
µ(i)

− 1
)

=
k∑

i=1

µ(i)

∥∥∥∥∥∥
vi −

k∑

j=1

µ(j)vj

∥∥∥∥∥∥

2

2

≥ R(B)2 − ε,

using Lemma 5.1.

The objective value for functions with low in-
fluences For f : Ωn → R, j ∈ {1, . . . , n} and m ∈ N
denote (the “degree m-influence” of f):

Inf≤m
j (f) :=

∑

|σ|≤m
σj 6=0

f̂(σ)2.

For every 0 ≤ ρ ≤ 1 we will use the smoothing operator:

Tρf =
∑

σ

ρ|σ|f̂(σ)Xσ.

Equivalently,

Tρf(ω1, . . . , ωn) = E[f(ω′1, . . . , ω
′
n)],

where independently for each i, ω′i is chosen to be ωi

with probability ρ and a random (with respect to the
underlying distribution µ) element in Ω with probability
1− ρ.

The following theorem is the key analytic fact used
in our UGC hardness result:

Theorem 5.1. For every ε > 0, there exists τ > 0 so
that the following holds: for any function f : Ωn → ∆k

which satisfies

∀ i ∈ {1, . . . , k}, ∀ j ∈ {1, . . . , n}, Inf≤log(1/τ)
j (fi) ≤ τ

we have,

OBJ(f) ≤ C(B) + ε.

Proof. Let δ, η > 0 be sufficiently small constants
to be chosen later. Let Qi = Qfi be the multi-
linear polynomial associated with fi. Recall that Qi

is a multi-linear polynomial in the n(k − 1) indetermi-
nates {xjp | j ∈ {1, . . . , n}, p ∈ {1, . . . , k − 1}}. More-
over fi = Qi(X ) has range [0, 1] and

∑k
i=1 fi = 1.

Let Ri = (T1−δQi)(X ) and Si = (T1−δQi)(G)
(the smoothening operator T1−δ helps us meet some
technical pre-conditions before applying the invariance
principle of [9]). Note that Ri has range [0, 1] and
Si has range R. It will follow however from [9] that
Si is essentially in [0, 1]. First we relate OBJ(f) to
the functions Si which will, up to truncation, induce a
partition of Rn(k−1), which in turn will give the bound
in terms of C(B).

(1− δ)2 ·OBJ(f)(5.35)

= (1− δ)2
k∑

i=1

k∑

`=1

bi`

∑

σ:|σ|=1

f̂i(σ)f̂`(σ)

= (1− δ)2
k∑

i=1

k∑

`=1

bi`

n∑

j=1

k−1∑
p=1(∫

Rn(k−1)
xjp Qi(x)dγn(k−1)(x)

)

·
(∫

Rn(k−1)
xjp Q`(x)dγn(k−1)(x)

)

= (1− δ)2
k∑

i=1

k∑

`=1

bi`

〈∫

Rn(k−1)
x Qi(x)dγn(k−1)(x) ,

∫

Rn(k−1)
x Q`(x)dγn(k−1)(x)

〉
.



The last term above equals:

k∑

i=1

k∑

`=1

bi`

〈∫

Rn(k−1)
x (T1−δQi)(x)dγn(k−1)(x) ,

∫

Rn(k−1)
x (T1−δQ`)(x)dγn(k−1)(x)

〉

=
k∑

i=1

k∑

`=1

bi`

〈∫

Rn(k−1)
x Si(x)dγn(k−1)(x) ,

∫

Rn(k−1)
x S`(x)dγn(k−1)(x)

〉
.

We shall now bound the last term above by C(B)+o(1).
For any real-valued function h on Rn(k−1), let

chop(h)(x) :=





0 if h(x) < 0,
h(x) if h(x) ∈ [0, 1],
1 if h(x) > 1.

Applying Theorem 3.20 in [9] to the polynomial Qi, it
follows that (provided τ is sufficiently small compared
to δ and η),

(5.36) ‖Si − chop(Si)‖2L2(γn(k−1))

=
∫

Rn(k−1)
|Si(x)− chop(Si)(x)|2 dγn(k−1)(x) ≤ η.

The functions chop(Si) are almost what we want
except that they might not sum up to 1. So further
define

S∗i (x) :=
chop(Si)(x)∑k
i=1 chop(Si)(x)

.

Clearly, {S∗i }k
i=1 have range [0, 1] and

∑k
i=1 S∗i ≡ 1.

Observe that the following holds point-wise:

k∑

j=1

∣∣chop(Sj)− S∗j
∣∣ =

∣∣∣∣∣∣

k∑

j=1

chop(Sj)− 1

∣∣∣∣∣∣

=

∣∣∣∣∣∣

k∑

j=1

chop(Sj)−
k∑

j=1

Sj

∣∣∣∣∣∣
≤

k∑

j=1

|Sj − chop(Sj)| ,

where we used that
∑k

j=1 Sj = T1−δ

∑k
j=1 Qj =

T1−δ1 = 1. It follows that for all i ∈ {1, . . . , k} we
have:

‖chop(Si)− S∗i ‖L2(γn(k−1))

≤
k∑

j=1

∥∥chop(Sj)− S∗j
∥∥

L2(γn(k−1))

≤
k∑

j=1

‖Sj − chop(Sj)‖L2(γn(k−1))
≤ k

√
η,

where we used (5.36). Finally,

(5.37)
‖Si − S∗i ‖L2(γn(k−1))

≤ ‖Si − chop(Si)‖L2(γn(k−1))

+ ‖chop(Si)− S∗i ‖L2(γn(k−1))
≤ (k + 1)

√
η.

Now write

ui =
∫
Rn(k−1) x Si(x)dγn(k−1)(x),

wi =
∫
Rn(k−1) x S∗i (x)dγn(k−1)(x).(5.38)

The norm of ui − wi is bounded by (k + 1)
√

η using
(5.37) and Lemma 5.3 below. Since |S∗i | ≤ 1, the norm
of wi is bounded by 1. Returning to the estimation in
Equation (5.35) and applying Lemma 5.4 below, we see
that:

(1− δ)2 ·OBJ(f) =
k∑

i=1

k∑

`=1

bi`〈ui, u`〉

≤
k∑

i=1

k∑

`=1

bi`〈wi, w`〉+ O (k
√

η)

(
k∑

i=1

k∑

`=1

|bi`|
)

.

Since
∑k

i=1 S∗i ≡ 1 we have

k∑

i=1

k∑

`=1

bi`〈wi, w`〉

=
k∑

i=1

k∑

`=1

bi`

〈∫

Rn(k−1)
x S∗i (x)dγn(k−1)(x),

∫

Rn(k−1)
x S∗` (x)dγn(k−1)(x)

〉

≤ sup
f :Rn(k−1)→∆k

k∑

i=1

k∑

`=1

bi`

·
〈∫

Rn(k−1)
x fi(x)dγn(k−1)(x),

∫

Rn(k−1)
x f`(x)dγn(k−1)(x)

〉
= C(B).

It follows that OBJ(f) ≤ C(B)+ε, provided that η and
δ are small enough.

Lemma 5.3. Let g ∈ L2(Rn, γn). Then
∥∥∥∥
∫

Rn

x g(x)dγn(x)
∥∥∥∥

2

≤ ‖g‖L2(Rn,γn).

Proof. Note that the square of the left hand side equals

n∑

i=1

∣∣∣∣
∫

Rn

xi g(x)dγn(x)
∣∣∣∣
2

=
n∑

i=1

〈xi, g〉2.



Since xi ∈ L2(Rn, γn) are an orthonormal set of func-
tions, the sum of squares of projections of g onto them
is at most the squared norm of g.

Lemma 5.4. Suppose {ui}k
i=1 and {wi}k

i=1 are vectors
in Rn such that ‖ui − wi‖2 ≤ d for every i ∈ {1, . . . , k}
and ‖wi‖2 ≤ 1. Let B = (bij) be a k × k matrix. Then

∣∣∣∣∣
k∑

i=1

k∑

`=1

bi`〈ui, u`〉 −
k∑

i=1

k∑

`=1

bi`〈wi, w`〉
∣∣∣∣∣

≤ (
2d + d2

) k∑

i=1

k∑

`=1

|bi`|.

Proof. From the given conditions on the norms of ai =
ui − wi and wi, it follows that for any i, ` ∈ {1, . . . , k},

|〈ui, u`〉 − 〈wi, w`〉| ≤ |〈ai, w`〉|+ |〈a`, wi〉|+ |〈ai, a`〉|
≤ 2d + d2.

Hence,
∣∣∣∣∣

k∑

i=1

k∑

`=1

bi`〈ui, u`〉 −
k∑

i=1

k∑

`=1

bi`〈wi, w`〉
∣∣∣∣∣

≤
k∑

i=1

k∑

`=1

|bi`| |〈ui, u`〉 − 〈wi, w`〉|

≤ (
2d + d2

) k∑

i=1

k∑

`=1

|bi`|,

as required.

The intended hardness factor As we show next, the
dictatorship test can be translated (in a more or less
standard way by now) into a Unique Games hardness
result. The hardness factor (as usual) turns out to
be the ratio of the objective value when the function
is a dictatorship versus when the function has all low
influences, i.e.

R(B)2 − ε

C(B) + ε
=

R(B)2

C(B)
− o(1).

5.3 The reduction from unique games to
kernel clustering Given a Unique Games Instance
L(G(V, W,E), n, {πvw}(v,w)∈E), we construct an in-
stance of the clustering problem.

Reformulation of the clustering problem As in
our earlier paper [7], we first reformulate the kernel
clustering problem for the ease of presentation. As
observed there, we can reformulate it as (the matrix A

in the problem Clust(A|B) is captured by the quadratic
form Q below):

Kernel Clustering Problem: Given a k × k sym-
metric positive semidefinite matrix B, and a symmetric
positive semidefinite quadratic form Q(·, ·) on RN×RN ,
find F : {1, . . . , N} → ∆k, F = (F1, F2, . . . , Fk), so as
to maximize

∑k
i=1

∑k
j=1 bijQ(Fi, Fj).

The clustering problem instance Given a Unique
Games instance L

(
G(V,W,E), n, {πvw}(v,w)∈E

)
, the

clustering problem is to find a function F : W × Ωn →
∆k so as to maximize

∑k
i=1

∑k
j=1 bijQ(Fi, Fi) where

Q is a suitably defined symmetric positive semidefinite
quadratic form. For notational convenience, we write:

Fw := F (w, ·), Fw : Ωn → ∆k.

Also, for every v ∈ V , we write:

Fv := E(v,w)∈E [Fw ◦ πvw] , Fv : Ωn → ∆k.

We used the following notation: for any function
g : Ωn → ∆k and π : {1, . . . , n} → {1, . . . , n}
we write g ◦ π : Ωn → ∆k for the function (g ◦
π)(ω) := g(ωπ(1), ωπ(2), . . . , ωπ(n)). As usual, we de-
note Fw = (Fw,1, Fw,2, . . . , Fw,k) where each Fw,i has
range [0, 1] and

∑k
i=1 Fw,i = 1. Similarly, Fv =

(Fv,1, Fv,2, . . . , Fv,k) and
∑k

i=1 Fv,i = 1. Now we are
ready to define the clustering problem instance.

Clustering instance: The goal is to find F : W ×
Ωn → ∆k so as to maximize:

(5.39) max
F :W×Ωn→∆k

Ev∈V [OBJ(Fv)] = max
F :W×Ωn→∆k

Ev∈V




k∑

i=1

k∑

j=1

bij

∑

σ:|σ|=1

F̂v,i(σ) · F̂v,j(σ)


 .

Completeness We will show that if the Unique Games
instance has an almost satisfying labeling, then the
objective value of the clustering problem is at least
R(B)2 − o(1). So, let ρ : V ∪ W → {1, . . . , n} be
the labeling, such that for at least 1− ε fraction of the
vertices v ∈ V (call such v good) we have

πvw(ρ(w)) = ρ(v) ∀ (v, w) ∈ E.

Define F : W × Ωn → ∆k as follows: for every w ∈ W ,
Fw : Ωn → ∆k equals the dictatorship corresponding to
ρ(w) ∈ {1, . . . , n}, i.e.,

Fw := fdict,ρ(w).

Lemma 5.5. ([7]) For a good v ∈ V we have Fv =
fdict,ρ(v).



Thus the contribution of v in (5.39) is
OBJ(fdict,ρ(v)) ≥ R(B)2 − ε as observed in Equa-
tion (5.35). Since 1 − ε fraction of v ∈ V are good,
(5.39) is at least (1− ε) · (R(B)2 − ε) = R(B)2 − o(1).

Soundness Suppose for the sake of contradiction that
the value of (5.39) is at least C(B)+2ε. As in [7], it can
be proved that the Unique Games instance must have
a labeling that satisfies at least a constant fraction of
its edges, the constant depending on the parameter τ
used in Theorem 5.1. This is a contradiction, provided
the soundness of the Unique Games instance is chosen
to be even lower to begin with. The proof is the same
as in [7], by replacing the C(k) therein by C(B) ([7]
focused on the case when B is the k×k identity matrix.
The constant C(k) therein is same as our constant C(B)
when B is the k × k identity matrix).

6 A concrete example

In this section we will use our results to evaluate the
UGC hardness threshold of the problem of computing

(6.40) Clust


A

∣∣∣∣∣∣




1 0 0
0 1 0
0 0 c





 ,

where A ∈ Mn(R) is centered, symmetric and positive
semidefinite and c ∈ (0,∞) is a parameter. The case
c = 1, corresponding to B = I3 (the 3 × 3 identity
matrix) was evaluated in [7], where it was shown that
the UGC hardness threshold in this case equals 16π

27 .
For general c > 0 the optimization problem in (6.40)

corresponds to the following question: given n random
variables X1, . . . , Xn the goal is to partition them into
three sets S1, S2, S3 ⊆ {1, . . . , n} such that
(6.41)∑

i,j∈S1

E [XiXj ] +
∑

i,j∈S2

E [XiXj ] + c
∑

i,j∈S3

E [XiXj ]

is maximized. Thus we wish to cluster the variables
into three clusters so as to maximize the intra-cluster
correlations, while the parameter c allows us to tune
the relative importance of one of the clusters. We stress
that we do not claim that this optimization problem
is of particular intrinsic importance. We chose it as
a way to concretely demonstrate our results for the
simplest possible perturbation of the case of B = I3.
We remark that it is also possible to explicitly solve
the case of general 3 × 3 diagonal matrices B, i.e., the
case of a general weighting of the clusters in (6.41). The
formula for the UGC hardness threshold for general 3×3
diagonal matrices turns out to be quite complicated,
so we chose to deal only with (6.40) as a simple
example for the sake of illustration. Note that for 3× 3

matrices the characterization of C(B) in terms of planar
conical partitions is particularly simple, and allows for
explicit computations of the UGC hardness threshold in
additional cases.

Denote B :=




1 0 0
0 1 0
0 0 c


 = (〈vi, vj〉)3i,j=1, where

v1 = (1, 0, 0), v2 = (0, 1, 0), v3 = (0, 0,
√

c) ∈ R3. The
side lengths of the triangle whose vertices are v1, v2, v3

are
{
`1 =

√
1 + c, `2 =

√
1 + c, `3 =

√
2
}
. Note that

this is an acute triangle, so its smallest bounding circle
coincides with its circumcircle, and therefore its radius
is given by [5]:

R(B)2 =(6.42)
`21`

2
2`

2
3

(`1 + `2 + `3)(−`1 + `2 + `3)(`1 − `2 + `3)(`1 + `2 − `3)

=
(1 + c)2

2 + 4c
.

We shall now compute C(B). By Lemma 2.3 the
partition {A1, A2, A3} of R2 at which C(B) is attained
consists of disjoint cones of angles α1, α2, α3 ∈ [0, 2π]
where α1 + α2 + α3 = 2π. A direct computation shows
that for j ∈ {1, 2, 3} we have:

∥∥∥∥∥
∫

Aj

xdγ2(x)

∥∥∥∥∥

2

2

=
1
2π

sin2
(αj

2

)
.

Hence

(6.43)

C(B) =
1
2π

max
α1,α2,α3∈[0,2π]
α1+α2+α3=2π

(
sin2

(α1

2

)
+ sin2

(α2

2

)

+c sin2
(α3

2

))
.

Assume for the moment that the maximum in (6.43)
is attained when α1, α2, α3 ∈ (0, 2π). Then using
Lagrange multipliers we see that sinα1 = sin α2 =
c sinα3. This implies in particular that either α1 = α2

or (since α1, α2, α3 ∈ (0, 2π) and α1 + α2 + α3 = 2π)
α1 + α2 = π. In the latter case α3 = π, and it
follows from the Lagrange multiplier equations that
sinα1 = sin α2 = 0, which forces one of {α1, α2} to
vanish, contrary to our assumption. Hence we know
that α1 = α2 := α. Then α3 = 2π − 2α, and since
α3 ∈ (0, 2π) we also know that α ∈ (0, π). The Lagrange
multiplier equations imply that sinα = c sin(2π−2α) =
−2c sin α cosα. Thus cos α = − 1

2c , and in particular we
see that necessarily c ≥ 1

2 . It follows that

sin2
(α

2

)
=

1− cos α

2
=

2c + 1
4c

,



and

sin2
(α3

2

)
= sin2 (π − α) = 1− cos2 α = 1− 1

4c2
.

Hence in this case:

(6.44) sin2
(α1

2

)
+ sin2

(α2

2

)
+ c sin2

(α3

2

)

= 2
2c + 1

4c
+ c

4c2 − 1
4c2

=
(2c + 1)2

4c
.

It remains to deal with the boundary case
{α1, α2, α3} ∩ {0, 2π} 6= ∅, which as we have seen above
is where the maximum in (6.43) is necessarily attained
if c < 1

2 . If one of {α1, α2, α3} equals 2π then the oth-
ers must vanish, in which case sin2

(
α1
2

)
+ sin2

(
α2
2

)
+

c sin2
(

α3
2

)
= 0. If one of {α1, α2, α3} vanishes then

in order to maximize sin2
(

α1
2

)
+ sin2

(
α2
2

)
+ c sin2

(
α3
2

)
the other two must equal π, in which case the maximum
value of this quantity is max{2, 1+c}. Since max{2, 1+
c} never exceeds the quantity (2c+1)2

4c from (6.44) it
follows that the maximum of sin2

(
α1
2

)
+ sin2

(
α2
2

)
+

c sin2
(

α3
2

)
over {α1 + α2 + α3 = 2π ∧ α1, α2, α3 ∈

[0, 2π]} equals (2c+1)2

4c when c ≥ 1
2 and equals 2 when

c ≤ 1
2 . We therefore proved that

(6.45) C(B) =

{
(2c+1)2

8πc if c ≥ 1
2 ,

1
π if c ≤ 1

2 .

By combining (6.42) with (6.45) we conclude that the
UGC hardness threshold for computing (6.40) is:

R(B)2

C(B)
=

{
4πc(1+c)2

(1+2c)3 if c ≥ 1
2 ,

π(1+c)2

2+4c if c ≤ 1
2 .

(6.46)

Remark 4. An inspection of the above argument, in
combination with our algorithm that was presented in
Section 4, shows that the phase transition in (6.46) at
c = 1

2 corresponds to a qualitative change in the optimal
algorithm: after shifting the vectors {v1, . . . , vk} so that
w(B) = 0 and renormalizing by R(B), for c > 1

2 the
algorithm projects the points obtained from the SDP
to R2 and classifies them according to a partition of R2

into three cones of positive measure, while for c < 1
2

the partitioning is into two half-planes and the third set
(the one weighted by c) is empty.
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