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Abstract

In this paper we partially answer a question posed by V. Milman
1 1

and G. Schechtman by proving that £}, (C'log n)E(Hg)—embeds into

£51+s)n’ where 1 <p<2and1/p+1/g=1.

1 Introduction

In 1982 W.B Johnson and G. Schechtman [J-S1], [J-S2] proved that if 1 <
p < 2 then for any positive € there exists a constant C' = C/(¢) such that £7,
(1 + €)-embeds into £¢™ ( A generalization of this result was obtained by G.
Pisier [P] in 1983). The same result for p = 2 has been proved in 1977 by
T. Figiel, J. Lindenstrauss and V. Milman [F-L-M] who published a detailed
investigation on Dvoretzky’s theorem. In the same year, B.S. Kashin [K]
proved that for any 0 < € < 1 the space ¢ has a subspace of dimension
On which is C(#) close to Euclidean space. An investigation of all large
dimensional subspaces of /7 was continued by G. Schechtman, J. Bourgain,
J. Lindenstrauss, V. Milman, S.J. Szarek, M. Talagrand and others.

These results, together with the recent proofs of the isomorphic version
of Dvoretzky theorem ([M-S,2], [M-S,3]) led to the following question posed
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by V. Milman and G. Schechtman : Does there exist a universal constant
C(e) such that £ can be C(e) embedded into A9 In other words, can
we replace the constant C' in the Johnson-Schechtman result by 1+ ¢ for any
e > 0, at the expense of changing the constant 2 to some other (possibly
large) universal constant (which depends on ¢). In this paper we prove the
following weaker version:

Theorem There is a universal constant C' such that for every e > 0 and
every n there is a subspace Y of (17" with d(z,Y) < (Clogn)%(“’%),
where 1/p+1/q =1 and d(-,-) denotes the Banach-Mazur distance.

All the proofs of the result [J-S1] use random embeddings T £;* — ¢7. The
main point is to prove a concentration result which states that if |[b]|, = 1
then P(|||T(b)|[; — 1| > a) is exponentially small with respect to n. Such a
result yields, by standard arguments, that if n/m is large enough then with
high probability 7" would be a %f—g-embedding. If, however, we want n/m to
be arbitrarily close to 1, we are forced to choose a large a. When a > 1, the
estimate on P(1—||T'(b)||1 > a) is clearly meaningless, and we don’t get any
lower bound for ||T(b)||;.

In our proof we present a different approach. We still have a random em-
bedding 7" ( which is quite different from the embeddings used before), and we
prove directly an estimate for P(||T°(b)||; < t||b||,) - not via a concentration
inequality. Unfortunately, we do not get a bound on P(||T(b)||x > al|b||,)
which is exponential in n. We are therefore forced to use more complicated
estimates than in the usual “net” argument, and this is the reason why the
factor logn appears in the statement of the theorem.

2 The main lemmas
We will break the proof of the theorem into a few simple lemmas. The first
lemma is an elementary probabilistic result.

Lemma 1 Let Xq,...,X, be independent positive random wvariables with
densities bounded by C. Then for everyt > 0

P(zn:xk < t) < e

n!
k=1




Proof: Let ¢, be the density of Xj. Then :

Pyn, x,(5) = (P15 ... % dn)(s) =

/ / e / ¢1(u1) e g{)n_l(un_l)d)n(s—ul—. . .—un_l)dun_l . dul
0 0 0
s s—u1 S—UL— ... Up—2 Cnsnfl
< Cdugy_q...duy = .
<L =
Hence :

n t t Cnsnfl (Ct)n
= n < - =
P(;Xk < t) /0 d)zk:lxk(s)ds < /0 (n— 1)!ds o

]
Fix 1 < p < 2 and let g be a normalized symmetric p-stable random variable.
We will fix also m < n and attempt to embed £;" into £7.
Define a symmetric random variable X by :

0 if t<-nl/?
P(—n'/P<g<t .
P(X <t)= W it |t] < nl/p
1 if ¢t>n'/?
Lemma 2 There exists a constant C = C,, such that for every (by,-..,by)

in the unit sphere of £ the density of |3 i, bpXy| is bounded pointwise by
Coyq, where Xy, ..., Xy, are i.1.d copies of X.

Proof: PutY =Y b Xy. Since @jy| < 2¢y it is enough to prove that
Y has a bounded density. Notice that the density of X satisfies :

Pq Pq
.
<) S 1-¢

IA

¢X§P(

For some universal constant C' = C,. The last inequality follows from known
estimates of the tail distribution of a p-stable (see [D]).



Hence :

oy < qb{é%) k.. QSX‘[S%) <

(el ()

< m .
Sa-9m\ ]

< 62C¢ZZ”=1 brgr — 620(]59'
Where ¢4, ..., g, are i.i.d. copies of ¢ and the last inequality follows from
the fact that ) ;" | brgs has the same distribution as g.
]
We will now define the random variables which will be the object of our

study:
1 n m
Zy= > |2 biXi

i=1 | j=1

Where b = (b1, ..., byn) € £7" and {X;;}i27 ,_; are i.i.d. copies of X.

Corollary 1 There is a universal constant C = C, such that for everyt > 0

andbeﬁ;" :
t n
P(Zb<t)<<c ) )
|16,

Proof: We can clearly assume that ||b||[, = 1. By inverting the Fourier
transform of ¢, we see that ¢, < C pointwise, for some universal constant
C. Lemma 1 then implies that

(Cnt)" (Cnt)" ,
< < (C't)™.
n! T 2mnnre — ()

P(Zb<t)<

We now pass to estimating P(Z, > a).

Lemma 3 For everyt >0 :
1
Ee'X <14 = (Cosh(C’nl/pt) -1),
n

where C' = C, depends only on p.



Proof: Using the known tail estimates of a p-stable we get that for every
k>1:

1/p
o0 n P
EX2* = / 21 P(|X| > 1)dt = / ot 1 U9
0 0 P(|lg| < nt/r)

nl/p 2k/
1 C v
/ o~ gt < ' —
0 (]_ - —) tP n
n

Hence, since X is symmetric,

= (Ctnl/r)2 1
Z ]EX% <1+-— Z T =1+ - (cosh(Cnl/pt) —-1).

Lemma 4 SetY; = 7" b;X;;, where ||b|[, = 1, then for t >0

b
Ee'™! <1+ Ct+2 (exp <n||‘|b|\‘\1 (cosh(Cn/?[[b][sot) — 1)> - 1> ’

where C' = C, depends only on p.

Proof: By lemma 2 ¢}y, < C¢g, which implies that E|Y;| < C. Using the
elementary inequality

e’ <1+a+2(cosha—1)

we get that

Ee!Yil <14 Ct+2(Fe’Yi —1) =1+ Ct +2 (H]Eetlble - 1) <

=1

<1+Ct+2 (ﬁ (1 + % (cosh(Cn*/?|b;[t) — 1)) - 1) .

j=1
Now, by convexity, for every j:
b1
= [16l]oo

cosh(Cn/?|b;|t) — 1 < (cosh(Cn'/P||b|ot) — 1)



Hence

H ( (cosh (CnP|b;|t) — 1) ) < exp ( Z (cosh(Cn'/?|b;|t) — 1))

j=1

< exp ( |||‘Z;)|‘|‘ (cosh(Cn/P||b||sot) — 1))

Lemma 5 There is a universal constant C' such that for all a > C and

1Bl =1
_Cante 1/q
P(Zy>a) <e "

Proof: For every t > 0 we have

S|

P(Z, > a) = P(¢%71% > 1) < ¢ Ee” = ¢~ (e /)"
< et [1 + C +2 <exp ( |\|\b||‘|1 (cosh(CnP|[b|se—) — 1)) — 1)}
- bl |10 o0
< ta 9 || 1 .
=0T [CH " (eXp <n||b||oo exp(C— 15)

Take t = Cﬁbﬁ Notice that then

~

[1b]]
716l

Hblloot)_ el1o]lx
nt/a 7 nf[bl]e

exp(C <e.

Since for all 0 < x <e, e — 1 < 6 we get that

[1b] [10] oo
P(Zy > a) < exp [ ta+ Ct + 12HbHoo exp(C /4 )

nl/e 12€||b||1]
=exp |—(a—-C
- O+
nt/4 36nL/e Gl
< exp [—a—C + ] <e Tkl
= e * Tl
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for a big enough.
]

We will now prove a standard geometric result, the proof of which we include

for the sake of completeness. Define a special set of points on the unit sphere

of £

F=l M ucqp },A#0and e € {~1,1}™
= A AS yoooomp,A# (D and € € {—1, ,
where the multiplication €14 is pointwise.
Lemma 6 There is a constant C = C,, such that for all m
F) 2 ¢ B(™
)2 Togmyra )
Proof: Fixb e S(Z;") and assume that b; > by >

ald) =) [kYP - (k—1)"7] b,
k=1
and put A\, = ( s ml/P and )\, = %= b’”“kl/” for 1 < k < m.
Clearly Ay >0, > 0" A =1 and

m )\ k
kz_:—/zez

v

b

| \%

0. Define

=1

Holder’s inequality gives :

m 1/q m 1/p
a(b) < (Z [kl/p — (k — 1)1/11 q) ( |bk\P>

k=1
q\ /4 m— 11 1/q
1
(1+Z( 1 1/q> ) (1+pq ;) < C,(logm)*.
We proved that if by > by > ... > b, > 0 there exist a(b) > 0 and
v €conv(F) such that b = a(b)v and «a(b ) < C(logm)'?. Since F is in-

variant under permutations and changes of sign, this shows that

B(4)') € c(logm) Yaconv(F).



3 Proof of the theorem

We will first estimate:

Canl/q

P(AvweF,Z,>a) < ZP(ZU >a) < Ze* MTolToo
veF veF

m m
m) k —Canl/agl/p M\ k —Camlt/agl/e
ZE : ok o —Can < § : ok o —Cam
k=1 <k k=1 k
e m
U 1 1
S E :(k)e—c’am/qk /p,

for a big enough.
If £ > m/2 then

m e—C’aml/qkl/P < m e—C’aml/q(m/Q)l/p < 4—m€—C’am < e—C"am’
k [m/2]

for a big enough.

When k < m/2 put z = . Stirling’s formula gives that

k
m

( " ) <2(2"(1 - 2)0=™) ™",

xm

Hence
(::’) efC’aml/qkl/p < 2€fm(:clogw+(17$) 10gw—|—Ca:c1/p)_

Let f(z) = zlogz + (1 — x)log(l — z) + Cax'/?. Using the elementary
inequality z'/71log(1/z) < q/e we get that :

1 1
2/ f(z) = —z'/9log (5 - 1) + % > —z'/%10g (5> + Ca >-1,.=2

This shows that when a is big enough, f(z) is increasing, hence

—m(L 1 _ 1 _1 I
<TIZ> e_claml/qkl/p < % m(;-log - +(1—7-)log(1 m)+C’a(m)1/p)
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< 9elogm-+(m—1) log (14 715 ) —Ca(m)1/¢ < g~ Clam'/e.

Which gives
PRveF,Z,>a) < me~Com'?

Let A be a d-net in S(€). Then |N| < (2)™. We get that for every ¢ > 0

PEbeN,Z,<t) < (%) ()" < %

for 6 = Ct"/™, where C is some fixed universal constant. This shows that
for a big enough, with positive probability there is an w in our probability
space such that for all v € F, Z,(w) < a and for all b € N, Zy(w) > t. Fix
such an w and define T': £ — £7 by :

1 n m
i=1 \j=1
Then ||T'(b)||; = Zp(w) and the above remarks show that :

%B(%’z)} < sup {||T(0)||1;b € conv(F)} < a.

sup {70t € o ”

In other words, ||T|| < Ca(logm)*/?. Now, for any z € S(£") we can find
some b € N with ||z — b||, < 6 = C#"/™. Hence :

1T (@)l 2 1T @)/ = IT1|6 = Zu(w) = [IT]|6 = t = Callogm)"/at"/™.

_1

Optimizing over ¢ choose t = (Calog m)‘%(n/m_l)' We deduce that -
Jrai= (Klogm)éﬁ’

for some universal constant K, and this is the required result.



4 Remarks

In this section we would like to explain some of the inherent difficulties in
our approach. Assume that for every b € £' we have a random variable of

the form :
Z >,

11]1

I

where { X[, };”._ arei.i.d. copies of some symmetric random variable X'. If
Z1,j=

we somehow (for instance via lemma 1) get an estimate of the form P(Z; <
t) < (Ct)™ for ||b||, = 1 it follows that :

= 1
E|) bXi, Ezb>cp<zg2§)zg(1—2—n)20'.
j=1

Now,
1/2

C<E <|E = [[blla(BIX ).

m m 2
ijXij ijX{j
j=1 j=1

Since this is true for all ||b||, = 1, it follows that E|X'|? > Cn?*?~'. Hence,
for all k, B|X'[¥ > C*n*/P=k/2_ Now, by symmetry :

m
Ee! 275 05X | > gt 27 071X = TT Eets X'

j=1
H cosh Cnl/p 172, t).

If for instance b = (1,0,...,0) then we deduce that : Ee'Zb > On'/*7'/t g0
that the tails of Z; cannot be exponential in n and a, and the usual “net”
argument isn’t applicable. This is the reason why we are forced to introduce
concrete nets such as the family F. Moreover, for our specific Z,, it is possible
to show that if b = (1,0,...,0) then the estimate in lemma 5 is best possible,
up to a logn factor in the exponent.
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