Introduction

This thesis deals with geometric problems in functional analysis. It is quite hard to distin-
guish between geometric and non-geometric problems in analysis. Typically, an analyst deals
with questions that have to do with functions, with particular emphasis on the internal struc-
ture of the mappings involved. Geometric analysis tackles similar problems differently. It turns
out that it is sometimes preferable to think of a given function as a member (or a “point”)
of some larger ambient geometric space, which allows one to draw on geometric methods and
intuition to answer questions which had no a priori geometric flavor. Of the many examples
of the power of the geometric point of view we point out the applications of Bair’s category
theorem to the construction of exotic functions and the weak topology methods in the theory
of partial differential equations. As it often happens in mathematics, although the original
motivation for the development of geometric techniques were their usefulness in “real” analytic
problems, the internal richness and beauty of the geometry involved shifted the attention of
many mathematicians to the study of these structures in their own right. This is the approach
of the present work. We will deal with geometric questions that have to do with metric spaces
and Banach spaces since we find the subject appealing and beautiful in itself. In spite of
this, our geometric work does occasionally have applications in other fields, such as probability,
combinatorics and approximation theory. In this sense our work is a direct continuation of the
intensive development that geometric analysis has undergone in the 20’th century: from Ba-
nach’s seminal work in the beginning of the century, through the development of the structure
theory of Banach spaces in the 60’s and 70’s, the deep developments in the local theory of
normed spaces in the 70’s and 80’s and the more recent work on finite metric spaces and the
Lipschitz and uniform classification of Banach spaces.

This work is comprised of two parts: linear problems that have to do with with finite
dimensional Banach spaces and convex bodies, and non-linear problems involving Lipschitz
embeddings and extensions of Lipschitz/Hélder functions. Before passing to a detailed descrip-
tion of the results obtained in each of the above subjects we will briefly explain the common
points between the techniques that were involved in the research of both areas. There are two
themes which appear throughout this thesis. The first is that this work has to do with problems
of a finite nature. Of course, the linear problems we studied deal with finite dimensional normed
spaces. Moreover, when studying non-linear questions we concentrated solely on problems that
have to do with finite metric spaces. Even seemingly infinite theorems such as extension results
for Holder functions are actually based on results concerning a finite number of points. The
second theme of this work is the use of probabilistic techniques. There is nothing novel about
the deep connection between probability and geometry. The probabilistic method is a powerful
theory that has developed greatly since the 60’s. Our work relies heavily on probabilistic intu-
ition and techniques. In fact, some of our results can be viewed as probabilistic theorems with
a geometric flavor.



The first part of this work deals with non-linear problems that have to do with Lipschitz
embeddings of finite metric spaces in normed spaces and extensions of Lischitz/Holder maps.
Recall that if (X, d) and (Y, d) are metric spaces, then a function f : X — Y is called Lipschitz
with constant K if for every z,y € X, d(f(z), f(y)) < Kd(z,y). The least such constant K is
denoted by Lip(f). Lipschitz functions between metric spaces have been intensively investigated
in the 20’th century. The study of Lipschitz functions can be traced back to many fundamental
works in the first half of the 20’th century: Banach’s fixed point theorem, the Mazur-Ulam
theorem on onto isometries between Banach spaces, Kirzbraun’s work on extensions of Lipschitz
functions between Hilbert spaces and many more. Recently, more sophisticated results were
obtained, such as differentiability theorems for Lipschitz functions between Banach spaces and
the Lipschitz classification of normed spaces. We can safely say that the theory of Lipschitz
functions is now a deep and rich subject. In spite of this, there are numerous fundamental
questions concerning Lipschitz functions, and we strongly believe that this topic is still in its
(late stages of) infancy. We refer to the book [BL] for a detailed account of the state of the art
in this subject (up to approximately the year 2000).

The first chapter of this work deals with Lipschitz embeddings of graphs in normed spaces,
particularly in Hilbert space. This subject has been intensively investigated in the past two
decades. Apart from the intrinsic geometric interest in these questions, this research has been
fueled by its possible applications to theoretical computer science. When one is given a compli-
cated data in the form of a finite metric space (most often this data is actually a graph equipped
with the natural graph metric), it can be very helpful to represent this data as a subset of a well
understood and familiar space (Hilbert space and more generally £, spaces are prime examples,
but embeddings into other simple spaces such as trees have also been investigated and applied
to concrete computing problems). Unfortunately, such embeddings seldom preserve distances.
One is therefore forced to compromise by looking at embeddings which distort the geometry as
little as possible. How can we quantify this distortion of the geometry of a metric space? This
is where the Lipschitz condition comes in. The Lipschitz constant of a function measures to
what extent the function expands distances. On the same token, the Lipschitz constant of the
inverse of a function measures how much it shrinks distances. It is therefore natural to define
the distortion of a one to one mapping f: X — Y as:
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We denote by cy (X) the least distortion with which X can be embedded into Y. For p > 1 we
write for simplicity: ¢,(X) = ¢, (X). The parameter co(X) is of particular importance, and is
called the Euclidean distortion of X. It turns out that there is a formula for ¢o(X) when X is
a finite metric space. Let B,, be the set of all positive semi-definite n X n matrices () such that
QT = 0. Then, thinking of X as a metric defined on the set {1,...,n}, it was proved in [LLR]
that:
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Unfortunately, this formula is hard to work with, and guessing the optimal ) € B,, requires a
lot of effort. It is therefore not surprising that almost all the known calculations and estimates
for co(-) were based on other geometric ideas, and not on the above formula.



In [Boul], Bourgain proved that if X is an n-point metric space then co(X) = O(logn).
The proof is based on an elegant averaging technique which can be implemented as a simple
embedding algorithm (see [LLR]). As we shall see below, Bourgain’s upper bound was even-
tually shown to be tight. Bourgain himself proved that there exist n-point metric spaces with

Euclidean distortion €2 (log’ﬁ)g n) Is this the end of the story? Of course not. In practical
cases more restrictions on the metric space are known, and it would be very interesting to link
the value of co(X) with other geometric and combinatorial properties of X. At this point we
depart from the embedding problem for general metric spaces and restrict our attention to the
important family of graph metrics. Every connected graph G = (V, E), induces a natural metric
on its vertex set V', which is denoted by dg. For any two vertices u,v € V, dg(u,v) is defined
as the length of the shortest path joining u and v (for obvious reasons, dg is often called the
geodesic metric). There is a trivial bound for the Euclidean distortion of every graph metric:
c2(G,dg) < diam(G) (here diam(G) is the diameter of G). Indeed, this bound is achieved by
embedding G as simplex in Hilbert space. In [LLR] it was shown that there exist arbitrarily
large graphs G with c3(G) = Q(log |G|), i.e. Bourgain’s bound is tight. What is perhaps more
striking is that for these graphs we also have that diam(G) = O(log|G|). This means that the
trivial bound described above is tight. In other words, there exist complicated graphs such that
the best way to represent them as subsets of Hilbert space without distorting the distances too
much is to ignore their structure altogether and embed them as if they were a clique! One of
the consequences of our work described in the first chapter is a new proof of this intriguing
phenomenon.

What are these pathological graphs for which the trivial bound is tight? They are the so
called expanders. A graph G = (V, FE) is called an expander with conductance ® if for every
A C V such that |[A] < |V]/2, [{[u,v] € E;u € A,v ¢ A}| > ®|A|. In other words, a graph is
an expander if for every not too large subset of vertices, its edge boundary is large. On a first
glance one might doubt that expanders exist (to be more precise, it isn’t clear whether there are
arbitrarily large graphs with constant degree and constant conductance. Cliques are obviously
great expanders, but their degree is huge). It is a classical application of the probabilistic
method that constant degree expanders do exist (in fact, in an appropriate probabilistic model
most random graphs are expanders). Now that we know that for a constant degree expander G,
c2(G) is of order log |G|, what can be said about ¢,(G)? Of course, C(G) = 1, but it turns out
that ¢,(G) decays rather slowly as p — co. In [Mat] Matousek proved that ¢,(G) ~ 1 —I—% log |G|
for every p > 1.

Having recognized that there are “exotic” graphs for which the trivial bound is tight, we
will briefly describe the Euclidean distortion of more familiar graphs: discrete cubes, trees and
planar graphs. Let D,, = {—1,1}" be the discrete cube, equipped with the Hamming metric (i.e.
the ¢; metric). Enflo proved in [Enl] that for 1 < p < 2, ¢,(Dy,) ~ n'"%. For 2 < p < oo the
situation is more complicated: Bourgain, Milman and Wolfson proved in [BMW] that for every
€ >, cp(Dyp) > c(e)néff. In [Pi], Pisier later improved this estimate to ¢,(Dy) = ( It ) In
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the third chapter of this thesis we will show that in fact, c,(Dy) ~ v/n for p > 2. If we denote
by T, the full binary tree of depth n, then Bourgain proved in [Bou2] that for 1 < p < oo,
cp(Th) ~ (log n)™in{1/2.1/p} * Finally, it was proved by Rao [Rao] that if G is a planar graph then
c2(G) = O(4/log|G]). In chapter 1 we deal with the Euclidean distortion of regular graphs with
large girth. Recall that the girth of a graph G = (V, E) is the length of the shortest closed path



in G. If G is a k-regular graph, £k > 3 with girth g, then G obviously contains trees of depth
2 — 1 (in fact, every ball of radius 4 — 1 in G is isometric to such a tree). Bourgain’s lower
bound for the Lipschitz distortion of trees yields that c2(G) = Q(y/Iogg). The main result of
chapter 1 is to improve this lower bound exponentially, by showing that c3(G) = Q(,/g). We
can actually refine this estimate by taking into account the spectral gap of G. If we denote
by A the adjacency matrix of G then since G is k-regular, its largest eigenvalue is k. The
difference between k and the second largest eigenvalue of A is called the spectral gap of G. In
chapter 1 we show that if G is a k-regular graph, k > 3, with girth g and spectral gap e then
c2(G) = Q(g/+/min{g, k/e}). Since there are arbitrarily large graphs with a constant spectral
gap and which are k-regular, k£ > 3, with girth ¢ and diameter O(g), this gives a new proof of
the fact that the trivial upper bound for the Euclidean distortion of graphs is tight.

The methods with which we obtained the results of chapter 1 are of particular interest.
The proof of the lower bound c3(G) = €(,/g), is based on the notion of Markov type (this
notion will resurface in chapters 2 and 3 as well). Let X be a metric space. A stochastic
process {Z;}32, is called a symmetric Markov chain on X if there are z1,...,2,, € X such
that each Zj takes values in {z1,...,Z,}, there is a symmetric stochastic m x m matrix A
such that for each k, P(Zy4+1 = zj|Z; = z;) = a;j = aji, and Zj is uniformly distributed (i.e.
P(Zy = z;) = % for each 7). X is said to have Markov type p > 0 if there is a constant
K > 0 such that for every symmetric Markov chain on X, {Z;}2°, and for every integer n,
Ed(Z,,,Zy)P < KPnEd(Z1,Zy)P. Roughly speaking, X has Markov type p if every symmetric
Markov chain in X, at time 7, is not expected to wander further than Kn'/? times its average
step. The notion of Markov type was introduced by K. Ball, in connection with extension
problems for Lipschitz maps (we will return to Ball’s results later in this introduction). Ball
showed that Hilbert space has type 2. In chapter 1 we show that graphs with large girth behave
badly in terms of their Markov type, and use this observation to prove the aforementioned lower
bound for the Euclidean distortion.

To better understand the proof of the estimates in terms of the spectral gap, we recall
the basic approach to the proofs of all the existing lower bounds for the Euclidean distortion
of graphs. The simplest geometric way to distinguish between two metric spaces is by the
“strength” of the triangle inequality. Usually one shows that a metric space is far from Euclidean
since it contains “too many” triples for which the triangle inequality holds as a (near) equality.
One natural way to measure this phenomenon is via Poincaré type inequalities. By a Poincaré
inequality for a function f from the vertexes of a graph G = (V, E) into some metric space
(X,d) we mean a bound for the average size of {d(f(u), f(v))}uvev in terms of f’s average
“gradient” {d(f(u), f(v))}uwer- In proving the lower bound for the distortion required to
embed an n-point, k-regular expander G = (V, E) with conductance ® in £,, p > 1, Matousek
used the following Poincaré inequality for functions f : V' — £,:
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For the embeddability of the Hamming cube D,, in a metric space (X, d), the following Poincaré
inequality for functions f : D,, — X is relevant:
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When such an inequality holds, for some p > 0, for every n with K independent of n and f, we
say that (X, d) has Non-Linear type p. This notion was introduced by Bourgain, Milman and
Wolfson in [BMW], and we will return to it when describing the results of chapter 3. We refer
to chapter 1 for the Poincaré inequality used for obtaining the lower bound of the FKuclidean
distortion of trees. Our main result in the first chapter is based on the following new Poincaré
inequality: if G is a k regular graph, k > 3, with girth g and spectral gap ¢, then for every
1<s<g/2and f:V(G)— £y
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where C' is an absolute numerical constant. The proof of this inequality is based on the analysis
of an important sequence of polynomials associated with the graph G: the so-called Geronimus
polynomials.

The second chapter of this work deals with extension problems for Hélder functions. Recall
that if X and Y are metric spaces, then a function f : X — Y is called o Holder with constant
C if for every z,y € X, d(f(z), f(y)) < Cd(z,y)*. We denote By A(X,Y) the set of all « > 0
such that for all D C X and for all @ Holder f : D — Y there is an f : X — Y which is «
Holder with the same constant as that of f and the restriction of f to D is f. Such an f is called
an isometric extension of f. Analogously, we denote by B(X,Y) the set of all @ > 0 such that
there is a constant K > 0 such that for all D C X and for any «a Holder function g : D — Y
with constant C there is an « Holder function with constant KC, g : X — Y which extends
g- Such a g is called an isomorphic extension of g. Note that there is an inherent difference
between the construction of isometric and isomorphic extensions. Since the Hélder constant in
the isometric extension problem remains fixed, it suffices to extend a given function one point
at a time, in which case a simple Zorn lemma, argument shows that a maximal extension must
be defined on all of X. This observation goes back to Kirszbraun’s solution of the isometric
extension problem for Hilbert spaces [K]. The isomorphic extension problem poses different
challenges: there is no choice but to extend a function to an arbitrarily large number of extra
points, and then use some sort of compactness argument.

The first part of chapter 2 deals with the monotonicity of B(X,Y), i.e. we ask whether it
is true that a € B(X,Y) and 0 < 8 < « implies that 8 € B(X,Y). For @ > 0 we denote by
K,(X,Y) the infimum of all K > 0 such that for all D C X and every f: D — Y which is «
Holder with constant C', there is an extension of f to X which is a Holder with constant KC.
We prove that if we assume that Y is complete, « € B(X,Y) and 0 < § < « then for every
t>0, K> KyX,Y),DCX and f: D — Y which is § Holder with constant C there is a
function f : X — Y which extends f and satisfies :
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The main point here is that we got estimates that are independent of ¢. The proof of this
result is based on an iterative approximation procedure, in which we restrict f to appropriate
discrete sets, extend this restriction to an « Holder function, and take special care to glue
the functions obtained in such a way that they will converge to the desired extension. Since
the estimate we got does not depend on t, a simple weak* compactness argument gives that

d(z,y) <t = p(f(z), f(y)) < Cd(z,y)".



B(X,Y) is monotone whenever Y is a dual Banach spaces. We posed the question whether this
result is true for Banach spaces Y without the extra duality assumption. This problem was
subsequently solved by Brudnyi and Shvartsman [BS]| who applied deep results in interpolation
theory (namely the K-divisibility theorem) to prove that B(X,Y’) is monotone for arbitrary
Banach spaces Y (they proved in fact a more general result on the stability of the Lipschitz
extension problem under metric transforms, see [BS] for more details. However, their results
rely heavily on the linear structure of Y, and do not seem to yield a result for complete metric
spaces as above).

The second part of chapter 2 is devoted to the proof of the following result: if 1 < p,q < 2
then:

1) A(Lp, Lg) = (0, 2] (vere ¢* = g/ (g~ 1)).

2) B(Lp, Ly) = (0’ %]

3) For any £ < @ < 1 there is an o Holder function from a subset of the unit ball of L, to Lg
which cannot be extended to an o Holder function defined on all of the unit ball of L.

Since when 1 < ¢ < 2, ¢* > 2, we get a clear phase transition between the isometric
and isomorphic extension problems: K, (L, Ly), as a function of «, remains constantly 1 for
a < p/g*, for p/q* < a < p/2 it is strictly larger than 1 but finite, and for every a > p/2,
Ko (Lp,Lg) = co. Part 1) was proved by Wells and Williams in [W-W]. In chapter 2 we give
a simplified proof of this result. Part 2) is proved using a fundamental result of K. Ball [B]: if
1 < ¢ < 2 and X is a metric space with Markov type 2 then 1 € B(X, L,;). This theorem was
Ball’s original motivation for the definition of the notion of Markov type. In the proof of part
3) we construct an unextendable function. The proof of its unextendability uses an averaging
argument. As a byproduct of our construction we answer negatively a question posed by K.
Ball in [B] by showing that it is not true that all Lipschitz maps from subsets of Hilbert space
into normed spaces extend to the whole of Hilbert space. Finally, we show that the above phase

transition does not always occur: if 1 < p < 2 < ¢ < oo then A(Ly, Ly) = B(Ly, L) = (O, %].

In [B], K. Ball posed the question whether for 2 < p < oo, L, has Markov type 2. It follows
from the contents of chapters 1 and 2 that a positive answer to this problem would have several
interesting applications. The motivation for chapter 3 grew out of an attempt to calculate the
Markov type of Ly, p > 2. In order to better understand the results we briefly overview the
notions of type that are used in geometric analysis. The notion of (Rademacher) type is of
fundamental importance in modern Banach space theory. A Banach space X is said to have
type p > 1 if there is a constant 7" > 0 such that for every n and for every z1,...,z, € X,

n 2 1/2 n 1/p
3 e <T (Z ||wi||p) , (1)
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where €1, ... €, are i.i.d. random variables which take the values £1 with probability 1/2. Since
a subspace of a space with type p also has type p, this notion is particularly useful in proving
that a Banach space does not linearly embed in another space. When passing to the Lipschitz
category, one would like to define an analogous notion of type which is purely non-linear (and
of course, one would like to define this notion in such a way that a substantial part of the linear
theory of type would have appropriate analogues in the non-linear theory). Such definitions
were given by several authors: Enflo, Bourgain, Milman and Wolfson, and as described above,
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K. Ball. Let X be a metric space. A subset C'= {Tc}ccf1,—1}» C X is called an n-dimensional
cube in X. An unordered pair {z.,z.} is called an edge of C if € and ¢ differ in exactly one
coordinate. The set of all edges of C is denoted by edge(C). Similarly, the set of diagonals of
C'is defined by diag(C) = {{z¢,z—c}}.c1,_1j»- Now, the first step in defining non-linear type
is to notice that (1) can be interpreted as an inequality on “linear” cubes in X. Indeed, if we
define for € € {1,-1}", z. = > ", €z; and C = {Zc}ec(1,—1}» then it is easy to deduce from
(1) that:

1/2 1/2
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{a,b}€diag(C) {u,v}€edge(C)

Similarly, (1) and Kahane’s inequality give:

Yoo la-bP<K Y Ju-o” (3)

{a,b}€diag(C) {u,v}€edge(C)

Now comes the bold new step. Enflo [En2] defined what is called today Enflo-type as follows:
a metric space has Enflo-type p > 0 if (3) holds for an arbitrary cube C C X. Similarly, as
we have mentioned before, Bourgain, Milman and Wolfson [BMW] defined a metric space X
as having Non-Linear type p > 0 if (2) holds for an arbitrary cube C C X. On the face of it,
when X is a Banach space, these notions seem substantially stronger than the notion of type.
Bourgain, Milman and Wolfson proved that if X has type p > 0 then X has Non-Linear type ¢
for every 0 < ¢ < p. Similarly, Pisier [Pi] proved that if X has type p > 0 then X has Enflo-type
q for every 0 < g < p. The starting point of chapter 3 is the fact that for any metric space,
Markov type p implies Enflo type p. Having realized that a positive solution to the Markov type
2 problem would imply that Ly, 2 < p < oo has Enflo type 2, it was somewhat discouraging
that the only space that was known to have Enflo type 2 was Hilbert space. The purpose of the
third chapter was to remedy this. We prove that the class of spaces with Enflo type 2 includes
UMD spaces with linear type 2 (A Banach space X is called UMD if martingale differences
are unconditional in X. We refer to chapter 3 for a precise definition, but point out that the
class of UMD spaces contains all the classical reflexive spaces, particularly L,, 2 < p < oo ).
Unfortunately, the repertoire of spaces known to have Markov type 2 is presently restricted to
Hilbert spaces. The proof of the above result is based on showing that for UMD spaces the
logn term in an inequality due to Pisier [Pi] can be replaced by a constant independent of 7.
We refer to chapter 3 for a precise description of this and related inequalities. We just point out
that chapter 3 draws on techniques from Harmonic analysis. Finally, we apply the calculation
of the Non-Linear type of Ly, p > 2, to close the gap that was mentioned in the beginning of
this introduction concerning the distortion required to embed the discrete cube in this space.

The second part of this work, chapters 4-7, deals with applications of the cone measure
to convex geometry. The study of finite dimensional convex bodies originated from several
fundamental works in the end of the 19’th century and the beginning of the 20’th century. We
point out the ground-breaking contributions of Brunn, Minkowski, Balschke, Alexandrov and
others. The motivation for this research was twofold. On the one hand, convex bodies and their
geometry naturally attract geometers due to their beauty and their apparent (and misleading)



simplicity. On the other hand, mathematicians such as Minkowski discovered deep connections
between convex geometry and number theory. In the 1970’s and 1980’s, the intense development
of the local theory of Banach spaces emphasized the importance of convex geometry- after all
there is a natural correspondence between norms on R” and centrally symmetric convex bodies
in R™.

Let K C R" be a centrally symmetric convex body. The (normalized) cone measure on 0K
is defined as follows: for every A C 0K,

_vol({tr;z € A and 0<t<1})
B vol(K) ’

pr(A)

In other words, ux(A) is the normalized volume of the cone with base A and vertex at 0. In
the particular case K = B} = {x eRY; ||, = 20, |xi|7’)1/p} we write ppr = py. We also
denote by o the normalized surface area measure on 0B = S7. Note that o}, = py if and
only if p € {1,2,00}. It follows from a combination of results from chapters 4 and 5, that when

the dimension is large, p;, and oy are close in the following sense: for every p > 1 and every
measurable A C S7,

U (4) - " (4)] < C (1 - %) ‘]1) =

where C is a universal constant. In fact, in chapter 5 we prove the following stronger estimate
(except possibly for the dependence of the constants on p):

A<

In chapters 4 and 5 several applications for these estimates were obtained, which we will now
describe.

We begin with the results of chapter 4. In 1987, Diaconis and Freedman [DF| proved that as
long as k = o(n), the total variation distance between the distribution of the first k& coordinates
of a vector chosen randomly with respect to the surface measure on the n dimensional Euclidean
sphere, and the k£ dimensional Gaussian distribution, tends to zero as n tends to infinity. Since
for 1 < p < oo, p # 2, there are two natural probability measures on the sphere of £}, namely the
cone measure and the surface measure, in trying to find an £, version of the Diaconis Freedman
theorem one is faced with the problem how to properly choose a random vector on the sphere.
For reasons that will become clear later, the measure p; is much easier to work with. Rachev
and Riischendorf proved in [RaR] that for £ = o(n), the distribution of the first k£ coordinates of
a vector chosen with respect to p;, is close in total variation distance to the distribution on RF

whose density is proportional to e llellz, Using a much more complicated argument, Mogul’skii
[Mo] later proved the same statement for random vectors chosen according to oj,. Using the
estimate (4) we see that the result for o} actually follows from the much simpler result for
py- This is the general theme along which the estimates (4) and (5) are applied: one proves a
statement for the cone measure, which is usually rather easy to handle, and then transfers it
to a similar statement for the surface measure.

Another result in chapter 4 shows that in contrast to the £, version of the Diaconis Freed-

man theorem, if we project o onto a random direction, we will get with very large probability



a measure which is close the the Gaussian measure on R. This is the central limit property of
the surface measure on the unit ball of /. The classical central limit theorem is a cornerstone
of modern probability theory, and is one of the deepest natural phenomena discovered in math-
ematics. It states that if {X;}22, are i.i.d. random variable with mean zero and second moment
1, then (X1 +...4+ X,)/+/n converges in distribution to the standard Gaussian distribution. If
we denote by P the distribution of the random vector X = (Xjy,...,X,) € R?, then another
way to say the same thing is that the distribution of the orthogonal projection of P onto the
direction of the vector (1,...,1) tends to the Gaussian. When stating the central limit theorem
in this fashion, it becomes unclear why should the particular direction (1,...,1) be singled out
among all other possible directions in R*. Of course, some directions are trivially ruled out,
such as the coordinate direction (1,0,...,0), but one might expect that the projection of P
onto most directions is close to the Gaussian distribution. This is indeed the case, as proved
by Romik in [Ro] (such a result also follows from the classical Lindberg-Feller theorem). As is
common in probability theory, the next step is to allow some dependence between the coordi-
nates of a distribution on R", such that similar results still hold. The Central Limit Conjecture
for convex bodies states that if u is the normalized volume measure on a centrally symmetric
convex body K C R" in isotropic position, then the orthogonal projection of y onto most di-
rections is close to the Gaussian distribution (here “most” and “close” should be uniform over
all such bodies K). A convex body K is said to be in isotropic position if its covariance matrix
( i) K a:imjdac) is the identity (the isotropicity assumption corresponds to the normalization of the
second moment in the scalar case). Chapter 4 presents a positive solution of the Central Limit
Conjecture for uy; and o}, (from which the central limit property for volume measure on By
follows formally. The result for the volume measure was also proved in [ABP]).

We have in fact a higher dimensional version of the above statement. To introduce it, we
define the following distance between two probability measures, P and Q on R¥: T(P,Q) =
supy |P(H) — Q(H)|, where the supremum is taken over all affine half-spaces in R*. If we
denote by A the normalized Haar measure on the Grassmanian manifold G(n,k) of all &
dimensional subspaces of R", then the result in chapter 4 reads as follows: Let p > 1 and a:{}

T(1/p)  T((n+2)/p)]"/?
TG/p) | T(n/p) ] - Then

be the measure on R" given by o(A) = o(A/anp), where a,p = [

for every € > 0 and k < ce*n:
Ak [{E € G(n,k) : T(ProjE(a;’}),’yk) > e}] < Cexp(—cne4), (6)

where ¢,C' > 0 are universal constants. Here Proj E((f;}) is the orthogonal projection of the
measure cfg onto the subspace E, and 7, is the standard Gaussian measure on R¥. The proof
of this result uses measure concentration techniques and~ the special properties of uy to prove
(6) for the measure /i (which is defined analogously to o), and then inequality (4) to transfer
the result to oy.

In chapter 5, which is rather technical, inequality (5) is used to transfer concentration
inequalities for p; due to Gromov and Milman [GM] and Schechtman and Zinn [SZ2] to similar
results for oy. We refer to chapter 5 for a precise formulation of these results. We would like to
point out that among other results, the probabilistic properties of p;, are studied in chapter 5,
in particular it is shown to satisfy the so-called “negative correlation property”. Additionally,
a precise concentration inequality for the £ norm on the £ sphere (with respect to ug) is
obtained, a result which generalizes a theorem of Schechtman and Zinn [SZ2].



The reason the measure y; is so useful is the following concrete realization of it (due to
Schechtman and Zinn, [SZ1]). Let g1, ..., gn be i.i.d random variables with density proportional
to e~ ", If we denote by G the random vector (g1,-..,9,) € R* then G/||G||, generates the
measure p;. Moreover, [|G|, and G/|G||, are independent random variables. This result
plays a crucial role in both the proofs of the above statements and the geometric results in
chapter 6. In chapter 6 we study the maximal and minimal volume of the projection of B}

onto n — 1 dimensional hyperplanes. If we denote Hy = {:13 e R?; Zle z; = 0 then the main
result of this chapter states that for every hyperplane H C R", if p > 2 then vol(Py, (By)) <
vol(Pu(By)) < vol(Pg,(By)), and if 1 < p < 2 then vol(Pu(By)) < vol(Pg, (By)), where Py
denotes the orthogonal projection onto H. Moreover, we prove an analogue of the Meyer-Pajor
theorem [MP]: for every hyperplane H, vol(Py(B))/vol(By ') is an increasing function of
p > 1 (Meyer and Pajor proved the same monotonicity statement for volumes of sections of

BJ}). The main point in the proof of these results is to use the Schechtman-Zinn representation

of p;; and the calculation of jﬁ,‘—g that was done in chapter 4 to prove the following formula for
p

volumes of projections: let Xi,..., X, be i.i.d. random variables with density proportional to
t|2=P)/(P=1) exp (—[t|P/P=V)), p > 1. Then for every a € S" 1

vol(Por By) _ EIYJ, aiXil
vol(By~1) E| X1 |

This formula allows us to apply results from probability theory and Fourier analysis to prove
the above statements (namely, we use the Choquet ordering between random variables and the
theory of completely monotonic functions).

In the above notation, the independence of |G|, and G/||G||, plays a central role in many
results. One might hope that similar random variables exist for norms other than the £, norms.
The results in chapter 7 show that this in not the case, i.e. that under some mild assumptions,
the £ norm is the only norm on R" which admits a random vector X € R" with independent
coordinates such that X /|| X|| is independent of || X||. To be more precise, let || - | be a norm
on R” which admits such a random vector X. If X is absolutely continuous and its density is
of the form e~V(®), where V is locally integrable, then the norm || - || is a weighted £, norm.
Additionally, if X has countable support then, unless the norm || -|| is a weighted £, norm, || X]||
is a constant random variable (i.e. the independence of X /|| X|| and || X|| is trivial). When || - ||
is a weighted £, norm then a complete characterization of all such X is also given in chapter
7.

In chapter 8 we briefly discuss open problems and directions of future research which arise
from the work presented here.

We end this introduction with an explanation concerning the structure of this thesis. Each
chapter is a paper written (with the exception of chapters 2 and 5) with other mathematicians.
The names of the authors of each chapter are clearly stated in its heading. I would like to thank
my co-authors for their kind permission to include our joint results in my thesis.
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