IMPROVED BOUNDS IN THE SCALED ENFLO TYPE INEQUALITY
FOR BANACH SPACES

OHAD GILADI AND ASSAF NAOR

ABSTRACT. It is shown that if (X, || - |x) is a Banach space with Rademacher type p > 1

then for every n € N there exists an even integer m < n?~1/Plogn such that for every
f:Z), - X,
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where the expectation is with respect to uniformly chosen x € Z, and ¢ € {—1,1}". This
improves a bounds of m < n3~2/P that was obtained in [7]. The proof is based on an
augmentation of the “smoothing and approximation” scheme, which was implicit in [7].

1. INTRODUCTION

A Banach space (X, || - ||x) is said to have Rademacher type p > 1 if there is a constant
T < oo such that for every n € N and for every z1,2s,...,2, € X,

n
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where the expectation in is taken with respect to the uniform probability measure on
{—1,1}". By considering the case of the real line, we necessarily have p < 2. The smallest
possible 7" for which (1)) holds is denoted by 7},(X). The notion of Rademacher type is clearly
a linear notion, as inequality involves random linear combinations of vectors in X.

A Banach space (X, || -||x) is said to be finitely representable in a Banach space (Y, || - [|y)
if there exists a constant D < oo such that for every finite dimensional subspace E of X
there exists a subspace F of Y and a map T : E — F with ||T]| - ||T!]] < D. A classical
theorem of Ribe (see [11] and also [2]) states that if two Banach spaces X and Y are uniformly
homeomorphic, then X is finitely representable in Y and vice versa. This theorem motivated
what is now known as the “Ribe program”: finding concrete metric characterizations of local
properties of Banach spaces (a property is said to be local if it depends only on finitely many
vectors).

In particular, Ribe’s theorem suggests that the notion of Rademacher type has a purely
metric characterization. Finding a concrete characterization is a long standing problem that
goes back to the work of Enflo. Following Enflo, we say that a metric space (M, dy,) has
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Enflo type p > 0 if there exists a constant 7' < oo such that for every n € N and every
fA{-1,1}" = M,

E. |du(£(e). f(=2)’]
< sz:IE6 [dM(f(el, ey €§o1,€55Ej41 - -5 En), f(EL, -+, Ejm1, =€y €41, - - - ,5,1))’9] (2)

In [4], Enflo asked whether for the class of Banach spaces, Enflo type is equivalent to
Rademacher type. Clearly, Enflo type p implies Rademacher p: simply apply inequality
to the function f(e) = 2?21 g;xj, and inequality is obtained. In the other direction,
Pisier proved (see [10, Ch. 7]) that if a Banach space has Rademacher type p then it has
Enflo type p’ for every p’ < p. The question of whether Rademacher type p implies Enflo type
p remains an interesting open problem. Naor and Schechtman showed [9] that the answer
is positive for the class of UMD Banach spaces. We refer also to the work of Gromov [6],
Sec. 9.1] and Bourgain, Milman and Wolfson [3] for earlier results related to the notion of
non-linear type, and to the work of Ball [I] for an important variant of (2|) known as Markov
type.

Motivated by their work on metric cotype [8], Mendel and Naor defined in [7] the notion
of scaled Enflo type. A metric space (M, d) is said to have scaled Enflo type p > 0 with
constant 6 < oo if for every n € N there exists an m € 2N such that for every f : Z — M,

E:ﬁ,e

du (f (x+%e),f<x>)p] <O Y Efdu(f@ o) s@r ] @

In (3) and in what follows, {e;}7_, denotes the standard basis of Z;,. In [7] the following
theorem was proved:

Theorem 1.1. A Banach space X has Rademacher type p € [1,2] if and only if it has scaled
Enflo type p.

The notion of scaled Enflo type thus gives a purely metric characterization of Rademacher
type. While the value of m is implicit in Theorem [I.1] it does play a crucial role: note
that by choosing m = 2 in , the original Enflo type inequality is obtained. Therefore,
finding the smallest m for which inequality holds is a question of great interest. In [7] it
was shown that if a Banach space has Rademacher type p € [1,2] then it has scaled Enflo
type p with m < n®~2/P. Motivated by the recent progress in [5], we obtain the following
improved bound on m:

Theorem 1.2. Assume that a Banach space has Rademacher type p € [1,2]. Then for every
n € N, there exists m € 4N with m < n?>~YPlogn such that for every f : Z" — X,
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The outline of the proof of Theorem is as follows: we begin by describing a general
“smoothing and approximation” scheme. This scheme allows us to replace f in inequality
by a “smoothed” version of f and then use inequality . This is discussed in detail in
Section 2] Once we have the smoothing and approximation scheme, the proof of Theorem
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is straightforward. This is done in Section [3] The smoothing and approximation scheme
relies on two technical lemmas, one of which was proved in [7] and the other is proved in
Section [l The logarithmic factor in Theorem appears due to an additional complication
that does not arise in [5] (where there is no such logarithmic term); this is overcome here
via an application of Pisier’s inequality [10].

Notation. We use <, 2> to indicate that an inequality holds true with an implied absolute
constant Also, we use Sy, 2 x to indicate that the implied constant depends on p and T},(X)
and S, 2, if the constant depends on p only. Also, p will denote the uniform probability
measure on Z" and 7 will denote the uniform probability measure on {—1,1}". Finally, [n]
will denote the set {1,2,...,n}.

2. THE SMOOTHING AND APPROXIMATION SCHEME FOR THE CASE OF TYPE
Following [5], we investigate the approach which is implicit in [7]. Given f : Z}' — X and
a probability measure v on Z , let
frv(e)= [ fl@—y)dv(y).
zz,
For a Banach space X with Rademacher type p, suppose that we are given a probability

measure v that satisfies the following two properties:

(A) Approximation property:
[ 1700 = fa) e d APZ [ e~ SR )
(S) Smoothing property:

/n /{_1 I I f*v(x+e)— frv(x—e)|s dr(e)du(x)

NXSPZ / 1 +e5) — @) edp(z). (5)

The goal is to deduce inequality from 1nequahty . It is known that holds for
'linear’ functions = Z;‘:l x;v; (this statement is not completely accurate but is sufficient
to give an intuition). So, the idea is to first replace f by a smoothed version of it which
locally linear on average. The way to measure the smoothness of the function is given by
the smoothing property . On the other hand, the smoothed version of f has to be close
enough to f itself, since the final goal is to prove inequality for f. This is measured by
the approximation property .

To obtain inequality from and , choose m € 4N and note that by the triangle
inequality and convexity,

I (o2 - s

p p

< 3!

N frv(o+5e) = frvia)

w37 frv (o Fe) = £ (24 Do) ||+ 3 I wvi@) = F@I% - (6)

X
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Also, by the triangle inequality and Holder’s inequality (remembering that m is divisible by
4),

m/4 P

Hf*y<:c+—e> fxv(x H Zﬂf*z/x—i—%s) frv(x+2(t—1))|

t=1

p—lm/4
< (%) tzlﬂf*y(a:—l—Qts)—f*y(ar—l—Q(t—1)5)“’;(. (7)

Integrating @ over Z while using and the translation invariance of p,

s

f(a+5e) =@ dute) 3 [ 17 vie) = f@) uta)

et [ vt o) = Frvlo— o) Rduta). (8)

Integrating over ¢ € {—1,1}", while using the approximation property and the
smoothing property , we get

/:Zn A_lvl}n

f(o+2e) - f<x>Hp dr(2)dp()

x (A7 & mrs) Z / 1@+ e5) = F(@)[dpz). (9)

If we could find a smoothing and approximation scheme for which S < 1 and A < m, then @D
would imply

/Z‘;ln /{‘—1,1}"

f (a:—l— %8) — f(x)

" dr(&)du(a)
Nxmpz / V£ +e5) — f(@) (),

which is precisely the desired scaled Enflo type inequality . Thus, the goal is to come up
with a smoothing and approximation scheme with S < 1 and A as small as possible. In [7]

it was shown that one can choose and A < n3~2/P. Here we show that we can in fact choose
A < n?>Yrlogn.

Remark 2.1. In the context of metric cotype, it was shown in [5] that the scheme of
smoothing and approximation necessarily has limitations. Specifically, it was shown that
using such a scheme implies that m is bigger than some function of n. However, in the
context of type, this is no longer the case. If we assume that the notions of Rademacher
type and Enflo type are in fact the same for the class of Banach spaces, then the smoothing
property should hold for f itself in which case the approximation property becomes
trivial.



3. PROOF OF THEOREM

Let f:Z} — X, and fix an odd integer 0 < k < m/2. We follow the notations in [5] and
define the following family of averaging operators. For f: Z" — X, k < m/2 an odd integer
and B C [n], let

Apf(z) = [z +y)du(y),

1(Lp) Ly

where

Lg dﬁf{ €Ly, : Yi¢ B, y; =0;Vi € [n] y; is even; dzn (0,y) < k}.

As we mentioned in Section , the proof of inequality will follow once we have the
smoothing and approximation properties. The approximation property is given by the fol-
lowing lemma, which was already proved in [7].

Lemma 3.1 (Lemma 2.2 in [7]). For every Banach space X, every p > 1 and every f :
Zn — X,

., V80050 s ) < 7 S [ e ) = o)

The smoothing property is the new ingredient in this note.

Lemma 3.2. Assume that X is a Banach space with Rademacher typep. Then if k 2 nlogn,
we have for every f: Z' — X,

L) I8wfe e =~ Ause =) dre)dna

NXZ / 1@+ e5) — f(@)edp(z).

The proof of Theorem now follows immediately.

Proof of Theorem[I.3. As we saw in Section [2 we must have S < 1 and A < m. By
Lemma and Lemma the smoothing and approximation properties hold with A =
(k —1)n'=%/? and S = 1, assuming that k > nlogn. This implies A > n?>~'/Plogn and
therefore m > n?>~/?logn. O

4. PROOF OF LEMMA

We recall some notation from [5]: for ¢ € {—1,1}" and B C [n], let e be the restriction
of € to the coordinates of B. Also, for e,&" € {—1,1}", let (¢,¢) = > 7_, g;¢). Fix z € Zy,
and € € {—1,1}". Let

def
Ruf(w,e) = D > [Apnsf(@+0sk +epmps) — Appsf (@ + dsk — epps)] - (10)

SCn] se{-1,1}°
|S|=i i (§g,e5)=1—2l

Also, recall from [8] the following averaging operators:

def 1
&1w) Y s /S G )
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where
(k) E {y € Zy,: yyis even; VL€ [n] = {j},y is odd; day, (0,9) < k}.
The following identity follows immediately from Lemma 3.8 in [5]:
n fn—i—1
;gj[gjf<x+ej) gf$_e] ;;hzl /i)—i—ln 1 i,lf($7€)7 (11)

where {h;; }i<; are scalars satisfying
h070 = 1, (12)

— !
il 5 U0 (13)

Note that the first term on the right hand side of equals

(%H)nl Roof(z,e) = (%)nl [Apf(z+e) = Apyflz —e)].

Also, note that from the assumption k 2 nlogn we have that (%) < 1. Thus, using
identity ., we get

[Apf(z+e) = Ap flz =9

[Ei f(z+e) — & f(z —¢))] (14)

Z hk_zlf‘rg)

X X

Now, we have

ZZ Fuif(a.)

1=1 [=0

(ZZ ity g g s>ux> -

X =1 =0
Convexity of the function ¢ — t? and Hélder’s inequality imply

(ZZ i s, Hx) (ZQ Sl imust 6)")‘)
i=1 =0 =1
<32 (Zzi
i=1 =0

- : i(p— . |hzl|
<20 By g pe s ()

i=1 [=0

Therefore, combining and , we get

Zé‘j [c‘:jf(l‘ + €j) — ij(:c - 6]’)]

hi,
2 HRi,lﬂx,e)HX)

p

[Ap f(z+e) = A fla—e)|% S

X

S itp=1)s (s |
YD 20+ P R (e (16)

i=1 [=0
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The next goal is to estimate the average of ||R;;f(z,¢)|s over x € Z7, and ¢ € {—1,1}".

Lemma 4.1. Assume that X is a Banach space with Rademacher type p € [1,2]. Then for
all0 <l <i<n,

/% /{1,1}" |Riif(z, €))% dr(e)du(x)
<x (logn)? <n) (1) | Z / N+ e) = f@ldu@). (17

Proof. First, note that on the right hand side of there are (;) terms for which (dg,e5) =
1 — 2l and there are (?) sets S of size i. Therefore, applying the triangle inequality and then
Holder’s inequality,

p—1 s\ p—1
irat el < (1) ()

Y D A (@ + sk + epps) — Apps S (@ + 05k — epps)[[%- (18)

SCn] se{-1,1}°
|S|=i (6s,e5)=1—2l

We would like to integrate inequality over xz € Z7 and € € {—1,1}". First, note that
by the invariance of y we have

/Z [Appsf (@ + 05k + epps) — Apps.f (@ + dsk — epps) ||y dp()
= /Z [AppsS (@ + epps) = Appsf (= = epps) | dul@). (19)

Since Ap,)\s is a convolution with a probability measure we also have
/Z?n [Apnsf(@ +epns) = Appsf (= epns) || du(z)
< [ 196+ <) = 5o cuns) o). 20)
Thus, integrating over x € 7 while using and ,
JRLICETS

m () S [ Wt - s - sl (o). @)
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Recall Pisier’s inequality (see [10, Ch. 7]): for every g: {—1,1}" — X,

p
[ "CEY I
{,1’1}n {7171}n X
n p
< (elog n)p/ ZE; [g (g(j)) — g(g)} dr(")dr(e),
{~Lnx{-11)m || 55 N

where () (€1,-+-,€j-1,—€j,Ej+1,--.,En). For a fixed z € Z7, and S C [n], define

n def
9: + {=1,1}" = X to be gu(e) = f(z +epps) — f(z — epps). Cleatly, [y, gdr = 0.
Applying Pisier’s inequality to g, thus implies,

/ lg= (@)% dre)
{-1,1}"

< (elogn)? /
{(—1,1}nx{—1,1}n

Applying the Rademacher type property of X, we get

p n
/ ZS 9: (€9) = go@)]|| a7 Sx D _Nlge (V) g (23)
{-1.137 j=1
Now, by the deﬁmtlon of g, it follows 1mmed1ately that
9:(6) = 92 (1) = |7+ epys) = f (w4 o) ] = |1 = o) = £ (= <o)

in the case j € S we let W) = gmns, in which case the difference is zero). Thus, using
[n]\S [n]\
convexity and the translation invariance of p,

[ 109 = @l duto) <2 [5G+ e~ fa = ) duto)

dr(e")dr(e). (22)

n

> i [90 () = gale)]

j=1

< [ W+ e) - @I due) 21
Integrating over x € 7 and using ang , we get
L] ) = o=l drnte)
S llogn)’ Y- [ (e~ F@)f duta). (29
j=1 "L
Plugging into , we get

L) Rt ol eyt

wtognr (M) () Z / 17+ ¢5) — (@) Bed(z).
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The proof of Lemma is therefore complete. O
We are now in a position to prove Lemma [3.2]

Proof of Lemma 3.9 Integrating inequality over ¥ € Z" and € € {—1,1}", we get
/ /{ , |Apf(z+ &) = Apy f(x = 2)||§ dr(e)dulx)
noJ{—11m

L.
:Ln {_171}77,

n

b3S C L IR @), 20

ArEIan

Z g;&if(x+e;) —Eif(x —ej)]

=1 =0
Applying the Rademacher type inequality to the vectors {&;f(z +¢;) — & f(x —¢;)}i_,
p
/{ } Zgj Eif(x+e;) — Ef(x —¢)]|| dr(e)
1,1}
X

Sx D _NEf (@ +e) = Eif(x—ep)ls . (27)
j=1

Integrating over x € Z, and using convexity and the fact the &; is a convolution with
a probability measure implies

/n/{n}n

Z@ Eif(z+e;) — Eif (@ —e))]

dr(e)du(z)

<x Z 5t e = o). 29
It remains to bound the second term in . For that, fix 1 <7< nand 0 <! <. Using

Lemma and the estimate , each term in the sum on the rlght hand side of can
be bounded as follows:

i(p—1)(; p- M , P
20 (i 4 11t / /{} |Riaf (. 2) | dr(e)du(x)
| DN (P [(i\" i
20y (CEEE) (1) () tomnr S [ I+ e) = skt

(29)

Now,

oo (KB () (o - S50 (28




Thus, becomes

, . qhagl?
2o i 4 11 Ll / /{ | Ruaf @)l dr (@) (a)
noJ{=1,1}"

< () ogmy- S [, Mo - r@lduta). @)

Plugging and into implies
L 1S40 = S fe =) dryinte)

S [ () oy | 3 [+ e) - S eduta). (1)

We always have G2y <p 1. Thus, if we choose k 2 nlogn, Lemmafollows from (31). O
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