A Phase Transition Phenomenon Between the
Isometric and Isomorphic Extension Problems for
Holder Functions Between L, Spaces

Assaf Naor *

November 1, 2001

Abstract

We prove that it is possible to extend o Holder maps from subsets
of L, to Lq, (1 < p,q < 2) isometrically if and only if o < p/q" and
isomorphically if and only if & < p/2. We also prove that the set of a’s
which allow an isomorphic extension for @ Holder maps from subsets of X
to Y is monotone when Y is a dual Banach space. Finally, we study the
isometric and isomorphic extension problems for Holder functions between
L, and L, for general p,q > 1 and solve a question posed by K. Ball by
showing that it is not true that all Lipschitz maps from subsets of Hilbert
space into normed spaces extend to the whole of Hilbert space.

1 Introduction

Let (X, d) and (Y, p) be metric spaces. Recall that a function f : X — Y is called
o Holder with constant K if for every z,y € X, p(f(z), f(y)) < Kd(z,y)*. We
denote By A(X,Y) the set of all @ > 0 such that for all D C X and for all
a-Holder f : D — Y there is an f : X — Y which is o Holder with the same
constant as that of f and the restriction of f to D is f. Such an f is called
an isometric extension of f. Analogously, we denote by B(X,Y) the set of all
o > 0 such that there is a constant C' > 0 such that for all D C X and for any o
Holder function g : D — Y with constant K there is an @ Holder function with
constant CK, g : X — Y which extends g. Such a g is called an isomorphic
extension of g. Note that A(X,Y) C B(X,Y).
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In this paper we combine several results to prove the following theorem :

Throughout the rest of this paper, for 1 < p < oo we define p* =

Theorem 1 For1l <p,q<2:

1) A(Ly, Ly) = (0, q%].

2) B(Ly, Ly) = (0, ].

8) For any § < o <1 there is an a Hélder function from a subset of the unit
ball of L, to L, which cannot be extended to an o Hélder function defined on
all of the unit ball of L.

Note that for 1 < ¢ < 2, ¢* > 2 so that £ > q%. We therefore get a phase
transition between the various extension problems.

Part 1) of the theorem for p = ¢ = 2 was proved by Kirszbraun [K]. A
complete proof of part 1) can be found in [W-W]. We will give here a simplified
proof of part 1) which is perhaps of independent interest. The isomorphic
extension problem for Lipschitz maps between L, spaces was studied by Ball in
[B]. We will use the main theorem of [B] to prove part 2). We will then use an
idea of Lindenstrauss [L] (see also [T]) to prove part 3). In the last section we
will state some open problems related to the concepts discussed in this paper.
For a thorough discussion of related issues we refer to the book [B-L].

The abstract properties of the sets A(X,Y) and B(X,Y) are of independent
interest, and we will start this paper with a general theorem which we hope
will initiate the study of these sets. Namely, we will prove that if Y is a dual
Banach space then o € B(X,Y) and 8 < a implies that 8 € B(X,Y). This

simple statement seems to be surprisingly non-trivial.

2 Monotonicity of B(X,Y)

Let (X,d) and (Y, p) be metric spaces. For every a > 0 denote by K,(X,Y)
the infimum of all K > 0 such that for all D C X and every f : D — Y which
is a Holder with constant C, there is an extension of f to X which is a Holder
with constant KC. Our goal here is to prove the following :

Theorem 2 Let (X,d) be a metric space and Y a dual Banach space. If
a € B(X,)Y) and 8 < « then B € B(X,Y). Moreover, we have the follow-



ing estimate:
Ks(X,Y) < 307“1@()(, Y)2.

We will start out with a general lemma :

Lemma 1 Let (X,d) and (Y, p) be metric spaces. Assume o € B(X,Y), K >
K (X,Y) and B < a. Take D C X and f : D — Y B Hélder with constant C.
Assume also that g : X — Y is a Holder with constant a and for every x € D,
p(g(z), f(x)) < b. Then there is a function h : X — Y with the following
properties :

1) h is a Holder with constant 2Ka.

2) For every x € D,

plia), f(@)) < (K + 00 (£)
3) For every x € X,

p(h(), 9(x)) < 2(K +1)b+ (K +1)C (29) .

Proof: Put s = (C/2a)"/(®=P). Let N be a s net in D (i.e. a maximal s
separated subset of D). Define also :

A= {x € X:d(z,D) > (g)l/a}.

We will define h: N|JA =Y by :

[ f@) ifzeN
h(””)_{g(;) ifieA

We claim that h is « Holder with constant 2a. Indeed, if z,y € N are distinct
then :

p(h(a), h(w)) = p( (&), 1) < Clla,0)° < —5d(z,9)* = 2ad(a,v)"

h is clearly a Holder with constant a < 2a on A. Finally, if z € N and y € A
then d(z,y) > (b/a)'/* so that :



<b+ad(z,y)* <ad(z,y)* + ad(z,y)* = 2ad(z,y)°.

By our assumption, we can extend h to an a Holder function with constant 2Ka
defined on X. To prove 2), let z € D and find y € N with d(z,y) < s. Then :

p(h(), f(z)) < p(h(z), h(y)) + p(f(y), f(z)) < 2Kad(z,y)* + Cd(z,y)" <
_B_
<2Kas® +Cs® = (K +1)C (£> - .
2a
Part 3) is trivial if x € A. If z € D then :

p(h(z), 9(x)) < p(h(x), f(x)) + p(f(2), 9(z)) <

-

o —

A

Cc\*7 c
<(K+1)C %a +b<2(K+1)b+ (K +1)C %

Finally, if z ¢ A|J D then there is y € D with d(z,y) < (b/a)'/®. Hence :

p(h(x), g(x)) < p(h(x), h(y)) + p(h(y), f(y)) + p(f(¥),9(v)) + p(9(y), 9(x)) <

—B
< 2Kad(z,y)* + (K +1)C (%) +b+ad(z,y)* <

x—

B
§2Kaé+(K+1)C<g) +b+aé:
a 2a a

=2(K+1)b+ (K +1)C (%)Tﬁ

This lemma is iterated to prove the following extension result.

Proposition 1 In the above notation assume in addition that Y is complete.
Let D C X and f : D — Y be 8 Hélder with constant C. Then for everyt >0
there is a function f : X — Y which extends f and satisfies :

21K2
2 Cd(z,y)°.

d(z,y) <t = p(f(z), f(y)) <

Proof: Put A = (1/(2K))*/(@=8). We will define functions {g,}%, on X.
To define gg let N be a t net in D. If z,y € N are distinct then :

o (@), 1) < Cd(w,9)° < - d(a)"



By our assumption, the restriction of f to N can be extended to a function
go : X = Y which is a Hélder with constant (KC)/(t*#). If z € D then there
is y € N with d(z,y) < t. Hence :

(@), 0@)) < pF (&), ) + plaoly). 90(a)) < Ol y)® + s, )* <

<Ctf + t{f—_cﬁ
Assume that we have constructed g, : X — Y with the following properties :
a) g, is o Holder with constant ta_;{%.
b) For all x € D, p(gn(z), f(z)) < (K + 1)CA8™¢5.

By the previous lemma there is g, 1 : X = Y which satisfies:

t* = (K +1)CtP.

1) gn+1 is o Holder with constant

KC KC

2K w(a=B) — jaB\(i(a=B)"

2) For every z € D :

_B
planis (2. 1@) < (K +1C (5ermcmmmm )| -
= (K +1)CA(+1DB8,
3)Forallz € X :
P(Gni1 (), gn(2)) < 2(K + 1)2CAPtP + (K + 1)CAHDBE =
= (K + 1)CA"PtP (2K + 2 4+ N°) < 10K2Ct°P AP,

Hence, if n > m,

n—1 n—1
Pon(x), 9m(@) < 3 plgr(@), ges1 () < 10KCH 37 AW =
k=m k=m
ABm _ \Bn 10K2%Ct? 10K2Cath
— 2408 Bm _ \Bn Bm _ \Bn
= 0K 01 =5 < 1y W7 A € T (0T,

In the last inequality we used the fact that for all a > 8 > 0,1-2-8/(a=8) > Bla
(to see that this is true put v = «/f, and use the inequality 2* > 1 + z for

— 1



This shows that for all z € X, {gn(2)}52, is Cauchy. Since Y is complete
there exists f(z) = lim, o0 gn(z). If z € D then :

p(f(@), f(2)) = lim p(gn(2), f(2)) < lim (K + 1)CHIN" = 0.

n—oo

So that f extends f. Moreover, for every m:

- . . 10K2Cat? | 4. n
Plgm(2); (@) = I plgm(2),9a(2)) < lim ——7==—(N"" = N") =
_ 10K?Cat? 4,

B

The proof that f satisfies the required condition now follows. If d(x,y) < t then
we can find n > 1 such that tA" < d(z,y) < tA\"!. Hence :

p(f(@), f(y)) < p(f(2), gn(2)) + p(9n(2), 9u(v)) + p(gv), f(y)) <

10K2CatP KC
Bn a
<2 5 N+ ) d(z,y)* <
20K2 K 21K2C
< 07Oad(.1c,y)ﬁ + ¢ 7ad($;y)ﬁ

(o g)aP s 1@ ¥)" < =5

For every r > 0 put D, = {z € X,d(z,D) < r}.

Corollary 1 In the above notation, for every r > 0 there is an extension of f
to D, which is B Hélder with constant %.

Proof: Fix t > r and let f be the function constructed in the previous
proposition. If z,y € D, then there are z',y' € D with d(z,z') < r and
d(y,y') < 7. Now, if d(z,y) < t then p(f(z), f(y)) < (21K%aC/B)d(z,y)?. If
d(z,y) >t then :

p(f(x), f(y) < p(f(2), F(z") + p(f(="), F(y")) + p(F ("), F(y)) <
21K2%2aC

< — 5

< 27211(20‘07«5 +C

(d(z,2')" +d(y,y")?) + Cd(z',y')P <

(d(a',z) + d(z,y) + d(y,y"))? <

2 B B
< (2% (;) +C (1+ 2t_r> ) d(z,y)P.



So that f is 8 Holder with constant 30K2aC/f for t large enough. ]
We are now ready for the proof of theorem 2.

Proof of theorem 2: We will use the above notation and assume in addition

that Y is a dual Banach space. Fix some zq € D. For every n there is f, :

D, — Y which extends f and is 3 Holder with constant 30K2aC/S. Notice

that for every z € X, {fn(z)}52, is bounded. Indeed, ||f.(z) — f(zo)|| <

%d(w,xo)ﬂ. Therefore the w* compactness of balls in Y, for every free

ultrafilter &/ on N we can define :
flz) =w* - hbrlnfn(zv)
It is clear that f extends f. If z,3 € X then for n large enough, z,y € D,. By

our assumptions on f,,

2
g
By the w* compactness of balls we deduce that :
_ _ 30K2%aC
f@) - i) € 5 (0,25 Catw ).

In other words, f is § Holder with constant 30K2aC/f. [ |
A simple strengthening of theorem 2 is :

nw—n@eB@,

Corollary 2 If (X,d) is a metric space and Y is a Banach space such that
there is a Lipschitz retraction from Y** to Y then a € B(X,Y) and 8 < «
implies that 8 € B(X,Y). The same is true if we assume that Y is Lipschitz

equivalent to a dual Banach space.

Remarks:

1) There is a Lipschitz retract from £, to ¢o (see [B-L]), so that the above
theorem holds for Y = ¢g. Note that since ¢g is determined by it’s Lipschitz
structure, [G-K-L], ¢g isn’t Lipschitz equivalent to a dual Banach space. It is an
open problem whether for every Banach space Y there is a Lipschitz retraction
from Y** to Y (see [B-L]). A positive answer to this problem will therefore
prove the monotonicity of B(X,Y") for every metric space X and Banach space
Y.

2) At present we do not have an example of metric spaces X and Y for which
B(X,Y) isn’t an interval.



3) We do not know under what conditions A(X,Y’) is monotone. We con-
jecture that this is true when Y is a Hilbert space, and it seems likely not to
be true for a general Banach space Y ( although we do not have an example of
this).

3 The Isometric Extension Problem

In this section we will prove part 1) of the theorem. As stated above, a complete
proof of this result can be found in [W-W]. Some parts of our proof are new,
and we give simplifications of other parts.

We will first show that for any o > q%, a ¢ A(Lp, Ly). Our approach is based
on the following probabilistic lemma.

For every n put Q@ = {—1,1}", and let P be the uniform probability measure
on 2. We denote by ryq,...,r, the Rademacher functions on , i.e. rj(e) = ¢;.
Define a random variable A on 2 by :

/\(6) — |{i;6in: l}l

A satisfies the following concentration inequality :
1 o

A standard proof of this runs as follows :

1 _ n+yr,r 1 _ i _
P(/\—2>t)_P( ™ —5>t)=P ;r,>2tn =

— P (et(zz;l 7'1-—2tn) > 1) S Eet(z:;l 7‘,'—2tn) — e—2t2n (]Eetrl )n —

t —t\ "
_ 2 e+ e _ 2 2 42
—e 2nt ( 5 ) S e 2nt ent e nt .

We can now state the result we need :

Lemma 2 For all 1 < q < oo there is a constant C' which depends only on q
such that for any X € L ()

1 « logn
=S EX -0 >1-Cy/——.
n n

i=1



Proof: We can clearly assume that | X| < 1, since for every a > 1, l[a £ 1| >
|1 £ 1| and similarly for a < —1. Assuming |X| <1 we get that for all t > 0 :

1 & 1«
—D EX -  =E= ) (X = =EAX — 119+ (1= )X +1]9) >
n 4 n <
j=1 j=1
2EMX -7+ (A - NIX + 1) 1y 1< =

11— X|9+[1+ X 1
:E( ’ (A5 (=X =X +1) ) 1gnp<n 2

1
2E (1 B ‘A B 5‘ =X =0 +X|q|> Lia-s0 2
1
> (1 -2%)P(A -5l <) > (1-27)(1 - 2.

Now take ¢t = /187 [ ]

n

We can now prove :
Proposition 2 If a > E then o ¢ A(Ly, Lq)

Proof: Let ey, ...,e, be the unit basis of £. Put D = {ei,...,e,} and define
f:D — Ly(Q) by f(e;) =7;. Thenfori#j:

1.\ . .
(e = Fles)ly = (Blrs =)' = (G20) =248 b0,

So that f is a Holder with constant 2'/9°=%/P, Assume that f has an extension
to 0, which is a Holder with the same constant, and put X = f(0). By the
lemma we get that :

/1 1 1 . .
1-¢C OTgL" < EZ“X_TJ'HZ < EZTJO/Q /P[0 — g |20 = 2001/a" ~e/p),
j=1

=1

Since this is true for all n we deduce that 1/¢* —a/p >0, or a < p/q*. ]
It remains to prove that (0, £] C A(Ly, L,). We will need some probabilistic
results. In order to avoid measurability problems we will assume in what follows

that all measure spaces are finite.

Lemma 3 Let X and Y be identically distributed independent random wvari-

ables. Then for every 1 <p<2:

E/X — Y|P < 2B/ X|?



Proof:  For every random variable Z put ¢z(t) = Ee®Z. Tt is well known
that there is a constant C), such that :

E|Z|P = C,Re / 1=962(t) 4
0

tp+1
Hence :
C1-¢xv(t) 11— |ox(t)
EX -Y|P = CpRe/O T =C, / yry dt =
_ A =]e®DA + o)) ©2(1 - Reg(t)) ,, _

Corollary 3 If X andY are i.i.d. random vectors in L, then :
B|X - Y2 < 28]/ x]]2

Lemma 4 Let f : R?> = R be an anti-symmetric function. If X,Y are i.i.d.

random variables then :
2Ex (Ey f(X,Y))? < ExEy f(X,Y)2
Proof: Let Z be an independent copy of X and Y. We have :
x (By f(X,Y))* = ExEy Bz f(X,Y)f(X, 2).

Dividing the last expectation according to the relative order of {X,Y, Z}, and
relabeling the variables so that X <Y < Z we get, using the anti-symmetry of

[
ExEyEz f(X,Y)f(X,Z) = ExEyEz f(X,Y)* 11 z-v1+

+ExEy Bz Lix<v<z} [f(X, V) (X, Z2) + f(X, 2) f(X,Y) + f(Y, X) (Y, Z)+
Y, 2)f (Y, X) + f(Z,X)f(Z,Y) + f(Z,Y) f(Z,X)] =
=ExEy f(X,Y)’P(Z =Y)+
+EBx,v,zl{x<y<22[f(X, V) (X, Z) - f(X, V) (Y, 2) + f(X, 2)f (Y, Z)] =
=ExEy f(X,Y)?P(Z =Y)+

+Ex By Ezlixcy<zy [f(X,Y)? + (X, 2)> + f(Y, Z)*—

10



- (J(X,Y) = (X, 2) + [(V, 2))] =
=ExBy Lix<v}f(X,Y)’[P(Z>Y > X)+P(X < Z<Y)+P(Z< X <Y)]+
+ExEy f(X,Y)’P(Z =Y)=Ex,vz[/(X,Y) - (X, 2)+ f(Y, 2)"L{x<v<z} <
<ExEy f(X,Y)’P(Z=Y)+ExEy lix<yv} f(X,Y)’P(Z# X and Z #Y) =
=ExEy f(X,Y)?P(Z=Y) + %]EX By f(X,Y)?[P(Z # XandZ #Y)] =
= %]EX]Eyf(X, Y)2

Lemma 5 Let 1 < ¢ < 2. If X,Y are i.4.d. random vectors in L, and f :

Lq x Ly = L, is anti-symmetric then :
ExEy||f(X,Y)||" > 2Ex |[Ey f(X,Y)]I} .

Proof: Since we are dealing with finite valued random variables we may
assume that X is a random vector in ;. Denote by L, (R* x R, L,) the space

of all functions g : R® x R* — L, equipped with the norm :

\1/a
llgllgs.o = (Ex By [lg(X, V)I1")

Define :

T(o)(e) = By (LD FA00),

We think here of T'(g9) as an element of Lg(R", L), i.e. the space of all h :
R® — L, equipped with the norm :

«\ /9"
il = (Ex[IBGONE)
Integration of the above lemma gives that

2

1/2
g(X7Y)_g(Y7X) < 1 ||g||22
2 V2 ’

2

1
|T(g)ll2,2 < —= (EX Ey

V2

Moreover,

(Xa Y) — g(Ya X)
2

IT'(9)[o0,1 = sup
X

=

< sup [[g(X, Y)|[1 = ||9]lco,1-
1 X, Y

11



By a standard theorem from interpolation theory (see [Be-L§] theorem 5.1.2.)
we deduce that :

1
ITDea < 7= 19llae -

And this is the required result for g = f. ]

Lemma 6 Assume 1 < ¢ < 2 and 8 > ¢*. If X and Y are i.i.d. random
vectors in L, then :
BX = Y| > 28X — EX|)?

Proof: If 8 = ¢* use the previous lemma for f(z,y) =z —y. If 8 > ¢*, use
g-stable random variables to embed £, in Lg-. u
The geometric property that we will need is the following :

Proposition 3 Let I be some index set, {x;}icr C Lp, {yi}icr C Ly, {ri}icr C
(0,00) and 0 < a < p/q*. Assume that for alli,j € I, |ly; —y;lly < ||z — ;|5
Then :

() B(wi,r:) # 0= Blyi, 1) # 0.

iel iel
Proof: By a standard weak compactness argument it is enough to prove the
proposition for a finite index set I, say I = {1,..,n}. Fix z € N, B(zi,r;)
and let F be the linear span of y1,..,yn. For 8 = p/a > ¢*, define f; : F - R
by fi(y) = |ly — will5 — ||z — ;]|5. By the Min-Max theorem applied to the
function g(\,y) = Yoi; Aifi(y), A € R", y € F, there are y € conv{yi, ...,yn}
and A1, ..., A, > 0 with > | A; = 1 such that for every z € conv{yi, ..., yn}

We claim that y € (i, B(yi,r{). To see this define a random vector X by
P(X = x;) = )\; and let X' be an i.i.d. copy of X. We will also write y; = ¥(z;)-

By the previous lemmas:

max f;(y) < Z Xifi(Bp(X)) =E ([[1(X) — Ep(X)[)F — || X - =[[2) <

1<i<n
- =1

1
< E(II(X) - w(Xl5/ - ||x - X'|I5) <0,

ie. forevery i = 1,...n, [ly —yilly <z — x|l <r.

12
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We now return to finish the proof of (0, %] C A(Lp,L,). If D C L, and

f:D — L, is a Holder with constant 1 then for every y € L, \ D we can use

the above proposition to find z € (,cp B(f(z), ||z —y||5) and extend f to y by

defining f(y) = z. Now a Zorn lemma argument gives the required extension to
all of L,,.

4 The Isomorphic Extension Problem

The most powerful method known in the isomorphic extension problem is based
on the fundamental results of [B]. In order to proceed we will need to recall
the notion of Markov type which was defined there. Let (X,d) be a metric
space. A symmetric Markov chain on X is a Markov chain {M}}°, on a state
space {z1,...tm } C X with a symmetric transition matrix and such that My is
uniformly distributed. In other words, there is a m x m symmetric stochastic
matrix A = (a;;) such that for all k, P(My41 = x;|My = z;) = a;; and
P(My = x;) = % For 0 < p we say that X has Markov type p if there is a
constant C' > 0 such that for every symmetric Markov chain on X, { M }72, and
for every n : Ed(M,,, My)P < CnEd(Mi, My)P. Notice that C is independent of
the state space {z1,...,Zm}. The smallest such C is called the Markov type p
constant of X and is denoted by Mp(X). Joining together some of the results
from [B] we quote the following theorem :

Theorem 3 Let 1 < q < 2. If X is a metric space with Markov type 2, D C X
and f : D — L, is a Lipschitz function with constant K, then f can be extended
to a Lipschitz function defined on all of X with Lipschitz constant bounded by :

q—1
The space L2 has Markov type 2 with constant 1. This was proved in [B]. The
fact that L,, 1 < p < 2 has Markov type p with constant 1 was proved in [B]
by using the theory of isometric embeddings into Hilbert space. We will give a

direct proof which is based on the following lemma :
Lemma 7 If {My}{2, is a symmetric Markov chain on R then for every n :

Esin®(M,, — My) < nEsin?(M; — Mp).

13



Proof: We shall use the following identity :
1
sin®(a — b) = (sin® @ — sin® b)? + Z(sin 2a — sin 2b)? + sin® a + sin” b—

1 1
—sina —sin*b — 1 sin? 2a — 1 sin? 2b.

By using the Markov type 2 property for the Markov chains {sin® M }?2, and
{sin2M}, }3° , we get that :

1
Esin?(M,, — My) < nE [(sin2 M, —sin® My)? + Z(sin 2M; —sin 2M0)2] +

1
+2Esin? My — 2Esin* M, — 51Esin2 2My =
1
= nEsin?(M; — My)* — (n — 1)E (2 sin® My — 2sin* M, — 3 sin? 2M0> =
= nEsin?(M; — My)? — (n — 1)Esin?(My — My) = nEsin?(M; — M)
|

Corollary 4 If {M}72, is a symmetric Markov chain on R and 1 < p < 2
then :
]Ean - M()lp S n]E|M1 - M0|p.

Proof: It is easily seen that there exists a constant C' > 0 such that for all

teR: \
 sin® ¢
1P = C / 22 da
0 i ax
The result now follows by integration from the previous lemma. ]

Using integration again we get :

Corollary 5 If 1 < p < 2 and 0 < o < p then L, has Markov type o with

constant 1.

Proof: For a = p this is clear from the above. If a < p use p-stable random
variables to embed £, in L. [

Part 2) of the main theorem now follows. Define a metric d on L, by d(z,y) =
||z —y[|5. We have proved that (L,,d) has Markov type 2 so that theorem 2

gives the required result.

14



5 An Unextendable Function

Fix a@ > p/2. Our goal here is to prove part 3) of the main theorem, i.e. to
construct an a Holder function defined on a subset of the unit ball of L, which
cannot be extended to an o Holder function defined on all of the unit ball of
L.

For any o finite measure p the Mazur map ¢ : L,(u) — Lo(p) is defined by :

$(f) = |f I sign(f).

It is well known ( see [B-L]) that ¢ is p/2 Holder on the unit ball of L,(u),
with constant, say, C. Fix some ¢ > 0 and let N, (e) be an € net in the unit
ball of £2. Denote also by ¢y, : £2™ — £3™ the Mazur map. If z,y € N, (e) are
distinct then :

C «
[I¢n(2) = $n(®)ll2 < Cllz — yl[2/* < a1z = ullp-

In other words, the restriction of ¢, to N, (€) is a Holder with constant a—p/z
Assume now that the restriction of ¢, to N,(€) can be extended to an o Holder
function f with constant K on the unit ball of £2"(which we denote by B(£2")).
Define z1, ..., #n41 € B(£2") by:

1

Ty = Wl{k,...,ﬂnq}-

Following [L] we define for every permutation 7 of {1, ...,2n} and every 2n signs
6 = (61,...,02,) an isometry of both £2" and (3™ by :

U ox(i) = O;z(m~14).
We also put :
Veuf(@) = Uns (fU74))
Finally, if we put :
1
g(x) = 2 2! ;Vw,of(ﬂf)

then g is @ Holder with constant K and for every 7 and 0, Ur gg(z) = g(Ur o).
This easily implies that the vectors {g(zx+1) — 9(xx)}7_; are disjointly sup-
ported. Thus :

n

Z 9(@r41) — g(w1))

[19(Zns1) — g(21)l[2 =

2
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1/2
" 2a/p K
— _ 2 1/2 —
= <k§_lj lg(@ns1) g(mk)||2) <n'’K Gals = nelr i

Since ¢y, is invariant under permutations and signs, for every z in the domain

of f:

ll$n(2) = 9(@)[]2 < ll$n = f(2)]]2-

Now, we can find y € N,(e) with ||z — y||, < e. Hence, since f extends ¢, on
Ny (e) :

If (@) = dn(@)ll2 < [1£(@) = FW)Il2 + ||6n(y) — ¢n(@)||> < Ke* + Ce?/>.
So,
2Ke® + 2CeP/? > 19(2nt1) = dn(@ns1)ll2 + |lg(21) — Sn(z1)||2 >

> 116 (ar1) = G(@1) = (9(@asa) — o)) ll2 >
> [[6n(ns1) = dn(@)ll ~ llgenss) = glan)lls > 1=~

Choose € = m. Then :

3K > no/r—1/? (1 L) .

- pl/2-p/(4a)

Since 1/2 —p/(4a) > 0, the right hand side is greater than ¢n®/P~1/2 for n large

enough, so that we have proved the following;:

Proposition 4 There is a universal constant ¢ > 0 such that if @ > p/2 and
[ B(2") = 3™ is o Holder with constant K which coincides with ¢, on
Na (m) then K > en®/P=1/2,

Corollary 6 Let 1 < p,q < 2. For everyn there is a subset A,, C B({,) and an
a Hélder function f,, : A, — L, with constant 1 such that if g : B(£,) — L, is
a Hélder with constant K, and coincides with f on A,, then K > n. Moreover,
0€ A, and f,(0) =0.

Proof: It is well known, that L, contains a complemented copy of f». Fix
such a copy and let P : L, — {5 be a bounded projection. We also denote
by Qy the orthogonal projection from ¢; to £%. Fix some integer k and put
A = N, (zi7s=7z=)- If a is the smallest possible a Holder constant of the
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restriction of ¢y to A then put f = %d)k. Note that we have proved above that
a < Ck/p=1/2e)le=p/2) 1f g . B(¢,) — L, extends f and is a Holder with
constant K, then aQqy Pg : B(€2%) — £3* extends ¢, on A and is a Holder with
constant ||P||K Ck(/p~1/(2e)(e=p/2)  Hence :

||p||K0k(1/p—1/(2a))(a—p/2) > cko/P=1/2,
So that K > ¢'k'/2=7/(4%) Since 1/2 — p/(4a) > 0 we are done. [
To finish the construction note that it is clear that we may replace L, in part

3) of theorem 1 by ¢,. Fix A, and f, as above. Let {e,}32; be the unit basis
of £,. Define :

<1 1

n=1
The sets in the above union are disjoint. Indeed if kK # n and x € Ay, y € A4,
then :

l\DIr—l

1 1
| (e + 12) - (gmen+ 1) 2 1 - G0l + 10 2

We now define f : D — L, by putting for # € Ay, f(5i7en + 7) = fa(z). f
is clearly @ Hélder with constant 4* on si-e, + $A,. Fix n # k, z € Ay and

y € Ap. Since £,(0) = £(0) = 0, || fe(x) — fa(y)|| < 2 s0 that:

1 1
Hf (W”zw) -1 (zw n )H
1 1
(e 3%) = (e + 3v)|

This shows that f is o Holder with constant 4.

If g : B(¢p) — L, is o Holder with constant K and extends f, then for every
n, the function h(z) = g(1/2'/Pe, + 1/4z) extends f,, and is o Holder with
constant 4K . Hence 4K > n, which is a contradiction.

< olte

6 Remarks and Open Problems

In [W-W] it was proved that :

(0,p/q*] ifl<p,qg<2
_ ) (Op/g] ifl<p<2<g<oo
ALy, Ly) = (0,p*/q] f2<p,qg<o0
(0,p*/¢*] f2<p<ocand1l<qg<2

17



It is possible to prove of all these equalities along the same lines as the proof
in section 2. Here is an indication of the required changes. The analogue of

lemma 2 is :

Lemma 8 For all 1 < q < oo there is a constant C' which depends only on q
such that for all xz € £} :

1 & C
- _e.lle __-
nZIHx e.?llqz]' nq*_l'
]:

Proof: As in the proof of lemma 2, we may assume that for all 4, 0 < z; < 1.
Define also e = (1,...,1) € £7. Then :

1 <& 1 <&
- Dl —el|l = ;Z 21l + (25 = 17 = |24]9)] =
i=1

j=1

1 1 1 174 1
- (1_ ﬁ) lellg + lle — allg > (1— 5) lellg + - (n/2 ~ Jlzll,) "

The lemma now follows from calculation of the minimum of f(t) = (n — 1)#7 +
(1-1)9,0<t<1. =

The corresponding analogues of proposition 2 follow when we take f(e;) = e;
when 1 < p<2<g¢< o0; f(rj) = ej when p,¢ > 2 and f(r;) = r; when
1<¢g<2<p.

In order to prove the reverse inclusion of the above results one proves the
required analogues of proposition 3, by using the following probabilistic in-
equalities in the obvious places :

Lemma 9 Ifp > 2 and X,Y are i.i.d. random vectors in L, then :
o) BIX —Y|F" < 2B X"
b) B X - Y| > 2B||X —EX|l2.

Proof: Assume that X is a random variable on the measure space (2, P). To
prove part a) for every f : Q@ — L, define T(f) : @ x Q — L, by T(f)(w,7) =
f(w) — f(7). Tt is easy to verify that :

||T(f)||%2(QxQ,L2) = 2||f||%2(Q,L2)'

And
T (F)llLi@x0.L0) S NSllLi(0,00)-
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Now interpolate to get the necessary bound on T as an operator from Ly« (2, L,)
t0 Lp+ (2 x Q, Lp).
To prove part b) repeat the proof of lemma 5, but now interpolate between
L3(L2) and Loo(Leo). [ |
For the set B(L,, L,) we have the following inclusion :

Proposition 5

0,p/2] if1<p,qg<2
ifl<p<2<g<0
0,2/q] if2<p,qg<oo

0,1] if2<p<ooandl<qg<2

Proof: The first inclusion was already proved and the last inclusion in
trivial. The second inclusion is proved by repeating the arguments of section 4,
and replacing in all places the Mazur map from Lp(u) to Lo(u) by the Mazur
map from L,(u) to Ly(p). The third inclusion now follows since L, contains a
copy of L. [ |

Combining these results we see that the phase transition phenomenon that
appeared in theorem 1 does not always happen :

Theorem 4 If1 <p <2< g < oo then :
_ _ p
Al 1) = B(Ep 1) = (0.2].

In particular, we get that if ¢ > 2 then 1 ¢ B(Ls, L,), so that it is not true that
all Lipschitz maps from subsets of Hilbert space into normed spaces extend to
the whole of Hilbert space. This answers a question posed by Keith Ball in [B].

In the paper [B] the notion of Markov cotype 2 was defined. Analogously
we say that a normed space X has Markov cotype ¢ if there is a constant K
such that for every n x n symmetric stochastic matrix 4, 0 < a < 1 and
T1,..., Ty € X:

g
aZaw- HZCiTxT - ch,s:cs <K(1l-a) Zcuﬂm, — x|,

Where C = (1 — a)(I —aA)~!. The least K for which this holds is denoted by
Ny (X).
The obvious modifications of theorem 1.7. in [B] give :

19



Theorem 5 Let (X,d) be a metric space with Markov type ¢ and Y a reflexive
Banach space with Markov cotype q. Then 1 € B(X,Y) and:

Ki(X,)Y) < 3Mq(X)Nq(Y)-

Again, simple modifications of theorem 4.1. of [B] show that if ¢ > 2 then L,
has Markov cotype gq.

In [B] it was conjectured that for p > 2, L,, has Markov type 2. This conjecture
leads to the following:

Conjecture Assume that p > 2. Then if 1 < ¢ < 2, B(Lp,L,) = (0,1]. If
q > 2 then B(L,,L,) = (0,2/q].

Assuming that L, has Markov type 2 for P > 2 we can prove this conjecture.
In the first case 1 € B(L,, L,) because of the above theorem. In the second case
use the above theorem for X = L,, equipped with the metric d(z,y) = ||z—y| |,2,/ ?
and deduce that 2/q € B(Lp, Lq). The result now follows from theorem 2 and

proposition 5.
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