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Abstract. A metric spaceX is said to beabsolutely Lipschitz extendableif every Lipschitz functionf
from X into anyBanach spaceZ can be extended toanycontaining spaceY ⊇ X, where
the loss in the Lipschitz constant in the extension is independent ofY , Z, andf . We show
that various classes of natural metric spaces are absolutely Lipschitz extendable.c© 2003
Acad́emie des sciences/Éditions scientifiques et ḿedicales Elsevier SAS

Sur la propriét́e d’extension lipschitzienne absolue

Résum é. On dit qu’un espace ḿetriqueX a la propriét́e d’extension lipschitzienne absoluesi pour
tout espace de BanachZ, toute fonction lipschitziennef de X dansZ peutêtre étendue
à tout espace ḿetriqueY contenantX, avec une perte dans la constante de Lipschitz de
l’extension qui ne d́epend pas du choix deY, Z et f . Nous montrons que plusieurs classes
naturelles d’espaces ḿetriques ont la propríet́e d’extension lipschitzienne absolue.c© 2003
Acad́emie des sciences/Éditions scientifiques et ḿedicales Elsevier SAS

Let (Y, dY ), (Z, dZ) be metric spaces, and for everyX ⊆ Y , denote bye(X, Y, Z) the infimum over
all constantsK such that every Lipschitz functionf : X → Z can be extended to a functioñf : Y → Z
satisfying‖f̃‖Lip ≤ K‖f‖Lip. (If no suchK exists, we sete(X, Y, Z) = ∞). We also definee(Y, Z) =
sup{e(X,Y, Z) : X ⊆ Y } and for every integern, en(Y, Z) = sup{e(X, Y, Z) : X ⊆ Y, |X| ≤ n}.

Estimatinge(Y,Z) is a classical and fundamental problem that has attracted a lot of attention due to its
intrinsic interest and applications to geometry and approximation theory. It is a classical fact that for every
metric spaceY , e(Y, `∞) = 1, and Kirszbraun’s famous extension theorem [K] states that wheneverH1

andH2 are Hilbert spaces,e(H1, H2) = 1. We refer to the books [BL, WW] for a detailed account of the
casee(Y,Z) = 1 and list below three results which deal with the casee(Y, Z) > 1, when the target space
Z is a Banach space. In what follows,C is a universal constant.

T1.
(
Johnson-Lindenstrauss-Schechtman [JLS]

)
For every metric spaceY and every Banach spaceZ,

en(Y, Z) ≤ C log n.

T2.
(
Johnson-Lindenstrauss-Schechtman [JLS]

)
For everyd-dimensional normed spaceY and every Ba-

nach spaceZ, e(Y, Z) ≤ Cd.
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T3.
(
Matoǔsek [M]

)
For every metric treeT and every Banach spaceZ, e(T, Z) ≤ C.

In this note we observe a new phenomenon underlying these theorems which we refer to asabsolute
extendability—the notion that for some spacesX, Lipschitz functionsf from X into anyBanach spaceZ
can be extended toanycontaining spaceY ⊇ X, where the loss in the Lipschitz constant is independent
of Y , Z, andf , and thus depends only onX. To this end, let us define, for a metric spaceX, theabsolute
extendability constantae(X) by ae(X) = sup{e(X, Y, Z) : Y ⊇ X,Z a Banach space}. If ae(X) < ∞,
we say thatX is absolutely extendable. Additionally, for a family of metric spacesM, let us define
ae(M) = supX∈M ae(X) to be a uniform bound on the extendability of metrics inM. As far as we
are aware, the only previously known families of absolutely extendable metrics had such a property for a
“trivial” reason; these are the cases whenX is an absolute Lipschitz retract or when the familyM consists
of finite metrics of uniformly bounded cardinality (it is not too difficult to see that (T1) is true whenlog n
is replaced byn).

In order to state our results, let us introduce some notation. LetG = (V, E) be a countable graph with
edge lengths in[0,∞]. Denote byΣ(G) the one-dimensional simplicial complex that arises fromG by
replacing every edgee of G by an interval whose length is equal to that ofe. We now define the set of
metrics supported onG, denoted〈G〉, as the set of all subsets ofΣ(G) for all possible non-negative lengths
on edges ofG. For a family of graphsF , let 〈F〉 =

⋃
G∈F 〈G〉. Finally, Recall that thedoubling constant

of a metric spaceX, denotedλ(X), is the infimum over all numbersλ such that every ball inX can be
covered byλ balls of half the radius. Whenλ(X) < ∞, one says thatX is doubling.

THEOREM 1. – The following extension results hold true:

1. For a family of finite graphsF , ae(〈F〉) < ∞ if and only if 〈F〉 does not contain all finite metrics.

2. If M is a two-dimensional Riemannian manifold of genusg, then for everyX ⊆ M , ae(X) ≤ Cg.

3. For every metric spaceX, we haveae(X) ≤ C log λ(X).
4. For everyn-point metric spaceX, ae(X) ≤ C log n

log log n .

Observe that (2) implies that for every planar graphG, ae(〈G〉) ≤ C, which improves (T3). Additionally
since anyn-point metric space is isometrically embeddable in a compact two-dimensional Riemannian
manifold of genusO(n3), in (2) aboveae(M) must tend to infinity with the genus ofM . Sincelog λ(X) =
O(log n) for any n-point metric spaceX, and log λ(X) = O(d) wheneverX is a subset of somed-
dimensional normed space, (3) unifies and generalizes (T1) and (T2). Finally, clearly (5) improves on (T1)
by a factor oflog log n.

In what follows we will sketch the main steps in the proof of Theorem 1. In particular, in the ensuing
arguments we will ignore all measurability assumptions. We refer to our upcoming paper [LN] for detailed
proofs and additional results.

Let (Y, d) be a metric space andX a subspace ofY . For the purpose of proving extension results, we
may assume thatX is closed. Let(Ω,F , µ) be a measure space and fixK > 0. We shall say that a
functionΨ : Ω × Y → [0,∞) is aK-gentle partition of unity with respect toX if for every x ∈ Y \ X∫
Ω

Ψ(ω, x)dµ(ω) = 1, for everyω ∈ Ω andx ∈ X, Ψ(ω, x) = 0, and there exists a mappingγ : Ω → X
such that for everyx, y ∈ Y ,

∫

Ω

d(γ(ω), x) · |Ψ(ω, x)−Ψ(ω, y)| dµ(ω) ≤ Kd(x, y).

Let Z be a Banach space, andf : X → Z a Lipschitz function. We extendf to a functionf̃ : Y → Z by
defining forx ∈ Y \ X, f̃(x) =

∫
Ω

f(γ(ω))Ψ(ω, x) dµ(ω). It is not difficult to check that theK-gentle
condition ensures that||f̃ ||Lip ≤ 3K||f ||Lip. All the statements in Theorem 1 actually produceK-gentle
partitions of unity for the appropriate value ofK.
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Stocahstic decomposition.We construct gentle partitions of unity by first producing an appropriate dis-
tribution over partitions ofY . We say that{(Γi(·), γi(·), Ω, Pr)}i∈I is a stochastic decomposition ofY
with respect toX if I is some index set,(Ω, Pr) is a probability space, for everyω ∈ Ω, {Γi(ω)}i∈I is a
partition ofY and for everyi ∈ I, γi : Ω → X is a function such that for allω ∈ Ω, d(γi(ω), Γi(ω)) ≤
2 d(X, Γi(ω)). For ∆ > 0 the decomposition is said to be∆-bounded if for everyω ∈ Ω and i ∈ I,
diam(Γi(ω)) ≤ ∆. A ∆-bounded decomposition is called(ε, δ)-padded if for everyx ∈ Y such that
d(x,X) < ε∆, Pr

(∃i ∈ I s.t.d
(
x,X \ Γi(ω)

) ≥ ε∆
) ≥ δ.

Since we are interested in bounding the absolute extendability constant of a metric spaceX, we need
to impose intrinsic geometric restrictions onX which ensure thateverysuper-spaceY ⊇ X admits an
appropriate stochastic decomposition with respect toX. This is a achieved via the following partition
extension lemma.

Lemma 2 (Partition extension) Let (Y, d) be a metric space andX a closed subspace ofY . If X admits
an (ε, δ)-padded∆-bounded stochastic decomposition (with respect to itself), thenY admits an( ε

16 , δ)-
padded(1 + ε

2 )∆-bounded stochastic decomposition with respect toX.

To prove Lemma 2 we argue as follows. Let{(Γi(·), γi(·), Ω, µ)}i∈I be an(ε, δ)-padded∆-bounded
stochastic decomposition ofX with respect to itself. For every pointx ∈ Y , let tx ∈ X be such that
d(x, tx) ≤ 2 d(x,X). Now, for everyω ∈ Ω andi ∈ I, consider the set

Γ̂i(ω) = Γi(ω)
⋃{

x ∈ Y : d
(
tx, X \ Γi(ω)

) ≥ ε∆/2 andd(x, tx) ≤ ε∆/4
}

.

Finally, for any pointx ∈ Y \ ⋃
i∈I Γ̂i(ω), placex in a singleton set{x}. It is not difficult to check that

this yields the required decomposition ofY with respect toX.

We pass from padded decompositions to gentle partitions of unity as follows. LetX be a closed subset of
Y such that for everyn ∈ Z, Y admits an(ε, δ)-padded2n-bounded stochastic decomposition with respect
to X. We claim that thenY also admits aC

εδ -gentle partition of unity with respect toX.
Let ϕ : R+ → R+ be any 2-Lipschitz map withsupp(ϕ) ⊂ [ 12 , 4] andϕ ≡ 1 on [1, 2]. Additionally,

let g : R+ → R+ be such thatg ≡ 0 on [0, 1], g ≡ 1 on [2,∞) andg(x) = x − 1 on [1, 2]. For every
n ∈ Z let {(Γi

n(·), γi
n(·), Ωn, Prn)}i∈I be a2n-bounded stochastic decomposition ofY with respect to

X, and denote by(Ω, µ) be the disjoint union of{I × Ωn}n∈Z (where the measure onI is the counting
measure). For everyx ∈ Y andω ∈ Ωn there is a uniquei ∈ I for which x ∈ Γi

n(ω), and we denote
πn

ω(x) = d(x, Y \ Γi
n(ω)). For everyn ∈ Z, ω ∈ Ωn, i ∈ I andx ∈ Y set:

Ψ(i, ω, x) =
1

S(x)
· g

(
πn

ω(x)
ε2n−1

)
· ϕ

(
d(x,X)
ε2n−3

)
· 1Γi

n(ω)(x) and γ(i, ω) = γi
n(ω), (1)

whereS(x) is a normalization factor ensuring that
∫
Ω

Ψ(i, ω, x) dµ(i, ω) = 1. It is possible to show that
this construction yields the required gentle partition of unity; we refer to [LN] for the details.

The notion of a padded decomposition is motivated by recent advances in combinatorics and theoretical
computer science. Often in theoretical computer science, one needs to analyze data with an inherent metric
structure, and constructing well behaved stochastic decompositions has proved itself to be extremely useful
in various algorithmic applications. Variants of this approach have appeared in numerous contexts; see for
instance [LS, KPR, B]. The structural results of [KPR, R] imply that for every integerr, if G is a graph
which doesn’t admit the complete graphKr as a minor then anyX ∈ 〈G〉 admits a(cr, 1/2)-padded,
∆-bounded stochastic decomposition with respect to itself (for every∆ > 0). Since planar graphs exclude
K5 as a minor, part (2) of Theorem 1 follows. Additionally, for a family of graphsF , let mc(F) denote
its closure under taking minors, i.e. the maximal minor-closed family containingF . A deep theorem of
Robertson and Seymour [RS] states that ifmc(F) does not containall finite graphs, then there existsr ∈ N
such that all the graphs inF exclude aKr minor. Since contraction/deletion of an edge corresponds to
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weighting by0/∞, respectively, it follows that〈F〉 = 〈mc(F)〉, thus if 〈F〉 does not contain all finite
metrics, then certainlymc(F) does not contain all finite graphs. By the above reasoning it follows that
ae(〈F〉) < ∞, proving part (1) of Theorem 1. Part (3) of Theorem 1 follows from another result of Robert-
son and Seymour [RS] which characterizes graphs which can be realized on a surface of bounded genus
with no edge-crossings. Part (4) of Theorem 1 is based on a variant of a construction from [GKL] showing
that if (X, d) is doubling then it admits a(c/ log λ(X), 1/2)-padded∆-bounded stochastic decomposition
with respect to itself, for each∆ > 0. Finally, part (5) of Theorem 1 follows from the decomposition
of [CKR] and the improved analysis of [FHRT, FRT]. We refer to the upcoming paper [LN] for a detailed
account of these constructions and variants thereof, as well for additional extension theorems based on dif-
ferent notions of stochastic metric decomposition. In particular, in [LN] we discuss results analogous to
Theorem 1 in which the target space is not a Banach space, e.g. CAT(0) and related spaces.

The first author was partially supported by NSF grant CCR-0121555 and an NSF Graduate Research Fellowship.
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