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Abstract. A metric spaceX is said to babsolutely Lipschitz extendakifeevery Lipschitz functionf
from X into anyBanach spac& can be extended tanycontaining spac& D X, where
the loss in the Lipschitz constant in the extension is independéyit &4f, and f. We show
that various classes of natural metric spaces are absolutely Lipschitz extend@td603
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Sur la propriéte d’extension lipschitzienne absolue

Résumé. On dit qu'un espace #irique X a la propriéte d’extension lipschitzienne absolsepour
tout espace de Banach, toute fonction lipschitzienng de X dansZ peutétre étendue
a tout espace ratriqgue Y’ contenantX, avec une perte dans la constante de Lipschitz de
I'extension qui ne @pend pas du choix dg, Z et f. Nous montrons que plusieurs classes
naturelles d’espacesétriques ont la propte d’extension lipschitzienne absolug) 2003
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Let (Y,dy), (Z,dz) be metric spaces, and for evely C Y, denote bye(X,Y, Z) the infimum over
all constantg< such that every Lipschitz functiofi: X — Z can be extended to a functigh: ¥ — Z
satisfying|| f||Lip < K| f|lLip- (If no suchK exists, we set(X,Y, Z) = cc). We also define(Y, Z) =
sup{e(X,Y,Z) : X C Y} and for every integen, e, (Y, Z) =sup{e(X,Y,Z) : X CY, |X| <n}.
Estimatinge(Y, Z) is a classical and fundamental problem that has attracted a lot of attention due to its
intrinsic interest and applications to geometry and approximation theory. It is a classical fact that for every
metric space’, e(Y, () = 1, and Kirszbraun’s famous extension theorem [K] states that whetdéyver
and H, are Hilbert spaces,(H;, H2) = 1. We refer to the books [BL, WW] for a detailed account of the
casee(Y, Z) = 1 and list below three results which deal with the cafg Z) > 1, when the target space
Z is a Banach space. In what follows,is a universal constant.

T1. (Johnson-Lindenstrauss-Schechtman [\)Llajr every metric spack and every Banach spacg
en(Y,Z) < Clogn.

T2. (Johnson-Lindenstrauss-Schechtman [.)LBjr everyd-dimensional normed spagéand every Ba-
nach space’, e(Y, Z) < Cd.
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T3. (Matousek [M]) For every metric tre@ and every Banach spacg e(T, Z) < C.

In this note we observe a new phenomenon underlying these theorems which we refabsmlase
extendability—the notion that for some spacés Lipschitz functionsf from X into anyBanach spac&
can be extended tany containing spac& O X, where the loss in the Lipschitz constant is independent
of Y, Z, andf, and thus depends only afi. To this end, let us define, for a metric spaetheabsolute
extendability constante(X) by ae(X) = sup{e(X,Y,Z) : Y O X, Z a Banach spage If ae(X) < oo,
we say thatX is absolutely extendahle Additionally, for a family of metric spaced, let us define
ae(M) = supxcqae(X) to be a uniform bound on the extendability of metricshut. As far as we
are aware, the only previously known families of absolutely extendable metrics had such a property for a
“trivial” reason; these are the cases wh€ns an absolute Lipschitz retract or when the family consists
of finite metrics of uniformly bounded cardinality (it is not too difficult to see that (T1) is true iben
is replaced by).

In order to state our results, let us introduce some notationGLet (V, E) be a countable graph with
edge lengths if0, oc]. Denote byX(G) the one-dimensional simplicial complex that arises frénby
replacing every edge of G by an interval whose length is equal to thateofWe now define the set of
metrics supported o, denoted G), as the set of all subsets Bf &) for all possible non-negative lengths
on edges ofs. For a family of graphsF, let (F) = U, +(G). Finally, Recall that theloubling constant
of a metric spaceX, denoted\(X), is the infimum over all numbers such that every ball iK' can be
covered by\ balls of half the radius. WheR(X) < oo, one says thak is doubling

THEOREM 1. — The following extension results hold true:

1. For a family of finite graphsF, ae({F)) < o if and only if (¥) does not contain all finite metrics.
2. If M is a two-dimensional Riemannian manifold of geputhen for everyX C M, ae(X) < Cg.

3. For every metric spac&’, we haveie(X) < C'log \(X).

4. For everyn-point metric spaceX, ae(X) < Clolgoﬁogn.

Observe that (2) implies that for every planar gréghue((G)) < C, which improves (T3). Additionally
since anyn-point metric space is isometrically embeddable in a compact two-dimensional Riemannian
manifold of genug)(n?), in (2) abovene(M) must tend to infinity with the genus éff. Sincelog A\(X) =
O(logn) for any n-point metric spaceX, andlog \(X) = O(d) wheneverX is a subset of somé-
dimensional normed space, (3) unifies and generalizes (T1) and (T2). Finally, clearly (5) improves on (T1)
by a factor oflog log n.

In what follows we will sketch the main steps in the proof of Theorem 1. In particular, in the ensuing
arguments we will ignore all measurability assumptions. We refer to our upcoming paper [LN] for detailed
proofs and additional results.

Let (Y, d) be a metric space an¥l a subspace of . For the purpose of proving extension results, we
may assume thaX is closed. Let(2, F,u) be a measure space and fix > 0. We shall say that a
function¥ : Q x Y — [0,00) is a K-gentle partition of unity with respect t& if for everyz € Y\ X
Jo ¥(w, z)dp(w) = 1, for everyw € Q andz € X, ¥(w,z) = 0, and there exists a mapping: 2 — X
such that for every,y € Y,

/Q d(y(w),2) - [¥(w,7) — V(w,y)| du(w) < Kd(z,y).

Let Z be a Banach space, aifid X — Z a Lipschitz function. We extenfito a functionf : Y — Z by
defining forz € Y\ X, f(z) = [, f(7(w))¥(w,z) du(w). Itis not difficult to check that thé(-gentle

condition ensures thajtfHLip < 3K]||f]|Lip- All the statements in Theorem 1 actually producegentle

partitions of unity for the appropriate value Af.
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Stocahstic decomposition.We construct gentle partitions of unity by first producing an appropriate dis-
tribution over partitions of”. We say that{(T'%(-),~v(-), Q, Pr)};es is astochastic decomposition &f

with respect taX if I is some index set(2, Pr) is a probability space, for evety € Q, {T"(w)}ics is a
partition of Y and for everyi € I, +* : Q — X is a function such that for alb € Q, d(7%(w),"(w)) <
2d(X,T(w)). ForA > 0 the decomposition is said to h&-bounded if for everyw € Q andi € I,
diam(T%(w)) < A. A A-bounded decomposition is calléd, §)-padded if for everyr € Y such that
d(z, X) <eA,Pr(Jielstd(z, X \T(w) >eA) > 0.

Since we are interested in bounding the absolute extendability constant of a metricxspaeeneed
to impose intrinsic geometric restrictions dh which ensure thagverysuper-spac& O X admits an
appropriate stochastic decomposition with respeckto This is a achieved via the following partition
extension lemma.

Lemma 2 (Partition extension) Let (Y, d) be a metric space and a closed subspace &f. If X admits
an (g, 0)-paddedA-bounded stochastic decomposition (with respect to itself), themits an(3, 6)-
padded(1 + 5)A-bounded stochastic decomposition with respect to

To prove Lemma 2 we argue as follows. LT (-),v(-),Q, u)}ier be an(e, §)-paddedA-bounded
stochastic decomposition of with respect to itself. For every point € Y, lett, € X be such that
d(x,ty) < 2d(z,X). Now, for everyw € 2 andi € I, consider the set

I'(w) =T'w) | J{z €Y : d(t,, X \T'(w)) > eA/2andd(z,t,) < eA/4} .

Finally, for any pointz € Y\ J,¢; I'(w), placez in a singleton sefz}. It is not difficult to check that
this yields the required decomposition¥éfwith respect taX.

We pass from padded decompositions to gentle partitions of unity as follows beta closed subset of
Y such that for every. € Z, Y admits an(e, ¢)-padded™-bounded stochastic decomposition with respect
to X. We claim that thert” also admits as%—gentle partition of unity with respect t§.

Lety : R — R, be any 2-Lipschitz map withupp(y) C [3,4] andy = 1 on[1,2]. Additionally,
letg : Ry — R4 be suchthay = 0o0n|0,1],g = 10n[2,00) andg(z) = =z — 1 on|[1,2]. For every
n € Zlet {(T¢(-),7% (), 2, Pry) }icr be a2m-bounded stochastic decompositionYofwith respect to
X, and denote by, 1) be the disjoint union of I x €, },.cz (where the measure ahis the counting
measure). For every € Y andw € Q,, there is a uniqué € I for whichz € T} (w), and we denote
7 (z) = d(z,Y \ T%(w)). Foreveryn € Z,w € Q,,,i € I andx € Y set:

U(i,w, ) = S(lx) g (Zgﬂ) - (dgf?

whereS(z) is a normalization factor ensuring thfit (i, w, ) du(i,w) = 1. Itis possible to show that
this construction yields the required gentle partition of unity; we refer to [LN] for the details.

) inwl) wd e =he. o

The notion of a padded decomposition is motivated by recent advances in combinatorics and theoretical
computer science. Often in theoretical computer science, one needs to analyze data with an inherent metric
structure, and constructing well behaved stochastic decompositions has proved itself to be extremely useful
in various algorithmic applications. Variants of this approach have appeared in numerous contexts; see for
instance [LS, KPR, B]. The structural results of [KPR, R] imply that for every integér G is a graph
which doesn’t admit the complete grapti. as a minor then anyX' € (G) admits a(c,, 1/2)-padded,
A-bounded stochastic decomposition with respect to itself (for exery 0). Since planar graphs exclude
K5 as a minor, part (2) of Theorem 1 follows. Additionally, for a family of graphslet mc(F) denote
its closure under taking minors, i.e. the maximal minor-closed family contaifiind deep theorem of
Robertson and Seymour [RS] states thatif{ F) does not contaiall finite graphs, then there exists N
such that all the graphs iff exclude ak,. minor. Since contraction/deletion of an edge corresponds to
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weighting by0/oc0, respectively, it follows thatF) = (mc(F)), thus if (F) does not contain all finite
metrics, then certainlync(F) does not contain all finite graphs. By the above reasoning it follows that
ae({F)) < oo, proving part (1) of Theorem 1. Part (3) of Theorem 1 follows from another result of Robert-
son and Seymour [RS] which characterizes graphs which can be realized on a surface of bounded genus
with no edge-crossings. Part (4) of Theorem 1 is based on a variant of a construction from [GKL] showing
that if (X, d) is doubling then it admits &/ log A\(X), 1/2)-paddedA-bounded stochastic decomposition

with respect to itself, for eackh > 0. Finally, part (5) of Theorem 1 follows from the decomposition

of [CKR] and the improved analysis of [FHRT, FRT]. We refer to the upcoming paper [LN] for a detailed
account of these constructions and variants thereof, as well for additional extension theorems based on dif-
ferent notions of stochastic metric decomposition. In particular, in [LN] we discuss results analogous to
Theorem 1 in which the target space is not a Banach space, e.g. CAT(0) and related spaces.
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