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Abstract

We introduce the notion of scaled Enflo type of a metric space, and show that for Banach spaces, scaled Enflo
type p is equivalent to Rademacher type p.

1 Introduction

Recall that a Banach space X is said to have Rademacher type p > 0 (see [7]) if there exists a constant 7 < oo such
that for every xi,...,x, € X,
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where here, and in what follows, E, denotes the expectation with respect to uniformly chosen € = (g1,...,&,) €

{1, 1}". The infimum over all constants T for which (I)) holds is denoted 7', (X).

Motivated by the search for concrete versions of Ribe’s theorem [[12] for various fundamental local properties of
Banach spaces (see the discussion in [2} 9] [8]]), several researchers proposed non-linear notions of type, which make
sense in the setting arbitrary metric spaces (see [} 13 [1]]). In particular, following Enflo [S]] we say that a metric space
(M, dp) has Enflo type p if there exists a constant K such that for every n € N and every f : {-1, 1} - M,
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For Banach spaces (I)) follows from (2) by considering the function & — 2.1 €;x;. The question whether in the
category of Banach spaces Rademacher type p implies Enflo type p was posed by Enflo in [3], and in full generality
remains open. In [11] Pisier showed that if a Banach space has Rademacher p then it has Enflo type p’ for every
p’ < p (see also the work of Bourgain, Milman and Wolfson [3]] for a similar result which holds for a another notion
of non-linear type). In [10] it was shown that for UMD Banach spaces (see [4]) Rademacher type p is equivalent to
Enflo type p.

Motivated by our recent work on metric cotype [8]], we introduce below the notion of scaled Enflo type of a metric
space (which is, in a sense, “opposite” to the notion of metric cotype defined in [8]]), and show that for Banach spaces,
scaled Enflo type p is equivalent to Rademacher type p. This settles the long standing problem of finding a purely
metric formulation of the notion of type (though Enflo’s problem described above remains open). Modulo some of the
results of [8]], the proof of our main theorem is very simple.

Definition 1.1 (Scaled Enflo type). Let (M, dp() be a metric space and p > 0. We say that M has scaled Enflo type p
with constant 7 if for every integer n there exists an even integer m such that for every f : ZI — M,
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where y is the uniform probability measure on Z,, and {e Wizt is the standard basis of R”. The infimum over all
constants 7 for which (3)) holds is denoted 7,(M).



Theorem 1.2. Let X be a Banach space and p € [1,2]. Then X has Rademacher type p if and only if X has scaled
Enflo type p. More precisely,
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2  Proof of Theorem 1.2

We start by showing that scaled Enflo type p implies Rademacher type p.
Lemma 2.1. Let X be a Banach space and p € [1,2]. Then T,(X) < 2r7,(X).
Proof. Let X be a Banach space and assume that 7,(X) < oo for some p € [1, 2]. Fix 7 > 7,(X), vi,...,v, € X, and let
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m be an even integer. Define f : Z, — X by f(x1,...,x,) = I eijj. Then
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We recall the contraction principle (see [6l]), which states that for every ay,...,a, € R,
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Combining @), (B and (6) yields the required result. i

Let X be a Banach space with type p, m an integer divisible by 4, and k an odd integer. Fix f : Z} — X and
g€ {-1,1}". Define AV f : 2" — X by
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Lemma 2.2. For p > 1 and every f : Z! —» X
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Proof. For every t € R let s(¢) be the sign of ¢ (with convention that s(0) = 0). For every z € Z],
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Observe that since & is odd, |(=k, k)" N (2Z)"| = k. Thus
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Proof of theorem[I.2] Fix an odd integer k € N, with k < 5. Asin [8]], given j € {1,...,n} we define S (j, k) C Z;, by
S, k) = {ye [-k,k]"CZ,: yij=0 mod2andV¥ {+# j, yy=1 mod 2}.

For f : Z;,, — X we define
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In [8]] (see equation (39) there) it is shown that for every x € Z and € € {—1, 1}",
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where, by inequalities (41) and (42) in [8]], for every € € {—1, 1}",
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Thus, for every T > T,(X),
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where in (§) we used the fact that 8;") is an averaging operator, and hence has norm 1.



On the other hand
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where in (TI0) we used Lemma in (TT) we used (8), and (T2) is true if 4n*~'/7 < k < =32 which is a valid choice
of kif m > 3n>7/7. o

Remark 2.3. If a metric space has Enflo type p then it also has scaled Enflo type p. This follows from a straightforward
modification of Lemma 2.4 in [8]. We do not know if scaled Enflo type p implies Enflo type p. In the category of
Banach spaces, a positive answer to this question would show that Enflo type p is equivalent to Rademacher type p,
resolving positively Enflo’s problem [3]]. We do know that for Banach spaces, scaled Enflo type p implies Enflo type
p’ for all p” < p, and that scaled Enflo type and Enflo type coincide for UMD Banach spaces.

Remark 2.4. The idea of scaling by 5 in the definition of scaled Enflo type originates from the definition of metric
cotype introduced in [8]], which involves a similar scaling procedure. In the case of non-linear type it is possible that
this scaling is not necessary, i.e. that Enflo type is equivalent to Rademacher type. However, as shown in [§]], in the
context of metric cotype the scaling is necessary- we refer to [8]] for more details.
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