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Abstract

This paper addresses two problems lying at the intersection of geometric analysis and theoretical
computer science: The non-linear isomorphic Dvoretzky theorem and the design of good approximate
distance oracles for large distortion. We introduce the notion of Ramsey partitions of a finite metric
space, and show that the existence of good Ramsey partitions implies a solution to the metric Ramsey
problem for large distortion (a.k.a. the non-linear version of the isomorphic Dvoretzky theorem, as
introduced by Bourgain, Figiel, and Milman ii@]). We then proceed to construct optimal Ramsey
partitions, and use them to show that for every (0, 1), everyn-point metric space has a subset of size
n'-¢ which embeds into Hilbert space with distorti@fl1/s). This result is best possible and improves
part of the metric Ramsey theorem of Bartal, Linial, Mendel and N&piirh addition to considerably
simplifying its proof. We use our new Ramsey partitions to design approximate distance oracles with
a universal constant query time, closing a gap left open by Thorup and Zwi@2jn Namely, we
show that for every point metric spac&, andk > 1, there exists a®(k)-approximate distance oracle
whose storage requirement@s(n“l/ k), and whose query time is a universal constant. We also discuss
applications of Ramsey partitions to various other geometric data structure problems, such as the design
of efficient data structures for approximate ranking.

1 Introduction

Motivated by the search for a non-linear version of Dvoretzky’s theorem, Bourgain, Figiel and M@jnan [
posed the following problem, which is known today asniegtric Ramsey problenGiven a target distortion

a > 1 and an integen, what is the largeskt such thateveryn-point metric space has a subset of dize
which embeds into Hilbert space with distortio? (Recall that a metric spac,dx) is said to embed
into Hilbert space with distortion if there exists a mapping : X — Ly such that for everyx,y € X, we
havedyx(x,y) < [If(X) — f(Y)ll2 < adx(X,y)). This problem has since been investigated by several authors,
motivated in part by the discovery of its applications to online algorithms — we reféf for[a discussion

of the history and applications of the metric Ramsey problem.

The most recent work on the metric Ramsey problem is due to Bartal, Linial, Mendel ancaNaadng
obtained various nearly optimal upper and lower bounds in several contexts. Among the reSlitstimg
following theorem which deals with the case of large distortion: For egesy(0, 1), anyn-point metric
space has a subset of size® which embeds into an ultrametric with distorti@(%) (recall that an
ultrametric , dx) is a metric space satisfying for evexyy, z € X, dx(x,y) < max{dx(X, 2), dx(y, 2)}). Since
ultrametrics embed isometrically into Hilbert space, this is indeed a metric Ramsey theorem. Moreover, it
was shown inf] that this result is optimal up to the log{® factor, i.e. there exists arbitrarily largepoint
metric spaces, every subset of which of sige® incurs distortionQ(1/¢) in any embedding into Hilbert
space. The main result of this paper closes this gap:

Theorem 1.1. Let (X, dx) be ann-point metric space and € (0, 1). Then there exists a subsétc X with
IY| > n'~¢ such that(Y, dx) is equivalent to an ultrametric with distortion at mogg.
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In the four years that elapsed since our work §irtifiere has been remarkable development in the struc-
ture theory of finite metric spaces. In particular, the theory of random partitions of metric spaces has been
considerably refined, and was shown to have numerous applications in mathematics and computer science
(see for examplell/, 25, 24, 1] and the references therein). The starting point of the present paper was
our attempt to revisit the metric Ramsey problem using random partitions. It turns out that this approach
can indeed be used to resolve the metric Ramsey problem for large distortion, though it requires the in-
troduction of a new kind of random partition, an improved “padding inequality” for known partitions, and
a novel application of the random partition method in the setting of Ramsey problems. In S2weteon
introduce the notion of Ramsey partitions, and show how they can be used to address the metric Ramsey
problem. We then proceed in Secti8mo construct optimal Ramsey partitions, yielding Theored Our
construction is inspired in part by Bartal's probabilistic embedding into ti4jeafd is based on a random
partition due to Calinescu, Kafiband Rabani9], with an improved analysis which strengthens the work
of Fakcharoenphol, Rao and Talwaf]. In particular, our proof of Theore/.1is self contained, and con-
siderably simpler than the proof of the result frcgh fluoted above. Nevertheless, the constructiorbbf [
is deterministic, while our proof of Theorefnl is probabilistic. Moreover, we do not see a simple way
to use our new approach to simplify the proof of another main resufijphfimely the phase transition at
distortiona = 2 (we refer to§] for details, as this result will not be used here). The result&pivhich
were used crucially in our worl2[7] on the metric version of Milman’s Quotient of Subspace theorem are
also not covered by the present paper.

Algorithmic applications to the construction of proximity data structures. The main algorithmic ap-
plication of the metric Ramsey theorem Bj |s to obtain the best known lower bounds on the competitive
ratio of the randomize#-server problem. We refer t&] and the references therein for more information
on this topic, as Theoreih 1 does not yield improve#-server lower bounds. However, Ramsey partitions
are useful to obtain positive results, and not only algorithmic lower bounds, which we now describe.

A finite metric space can be thought of as given bynits n distance matrix. However, in many algo-
rithmic contexts it is worthwhile to preprocess this data so that we store significantly less thambers,
and still be able to quickly find owipproximatelythe distance between two query points. In other words,
quoting Thorup and Zwick32], “In most applications we are not really interestedaihdistances, we just
want the ability to retrieve them quickly, if needed@he need for such “compact” representation of metrics
also occurs naturally in mathematics; for example the methods developed in theroetical computer science
(specifically L1, 20]) are a key tool in the recent work of ferman and Klartagllg] on the extension of
C™ functions defined on points inRY to all of RY.

An influential compact representation of metrics used in theoretical computer sciencepptbeimate
distance oraclg3,'14,'32,120]. Stated formally, al, S, Q, D)-approximate distance oracle on a finite metric
space X, dx) is a data structure that takes expected tii® preprocess from the given distance matrix,
takes spac§ to store, and given two query pointsy € X, computes in tim& a numberE(x, y) satisfying
dx(x,y) < E(x,y) < D-dx(x,y). Thus the distance matrix itselfisB € O(1), S = O(n?), Q = O(1), D = 1)-
approximate distance oracle, but clearly the interesté®impactata structures in the sense tBat o(n?).

In what follows we will depart from the above somewhat cumbersome terminology, and simply discuss
D-approximate distance oracles (emphasizing the distoBiprand state in words the values of the other
relevant parameters (namely the preprocessing time, storage space and query time).

An important paper of Thorup and ZwicB2] constructs the best known approximate distance oracles.
Namely, they show that for every intedereveryn-point metric space has a2 1)-approximate distance
oracle which can be preprocessed in ti@ 2), requires storagé)(k- n1+1/"), and has query tim&(k).
Moreover, it is shown in32] that this distortioystorage trade®is almost tight: A widely believed combi-
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natorial conjecture of Efis [16] is shown in B2] (see also26]) to imply that any data structure supporting
approximate distance queries with distortion at mdst 2 must be of size at least (n1+1/") bits. Since

for large values ok the query time of the Thorup-Zwick oracle is large, the problem remained whether
there exist good approximate distance oracles whose query time is a constant independent of the distortion
(i.e., in a sense, true “oracles”). Here we use Ramsey partitions to answer this question positively: For any
distortion, every metric space admits an approximate distance oracle with storage space almost as good as
the Thorup-Zwick oracle (in fact, for distortions larger thaflogn/ log logn) our storage space is slightly

better), but whose query time is a universal constant. Stated formally, we prove the following theorem:

Theorem 1.2. For anyk > 1, everyn-point metric spacé€X, dx) admits aO(k)-approximate distance oracle
whose preprocessing time([s(n2+1/" log n), requiring storage spac® (n1+1/"), and whose query time is a
universal constant.

Another application of Ramsey patrtitions is to the construction of data structuraggmximate rank-
ing. This problem is motivated in part by web search and the analysis of social networks, in addition to being
a natural extension of the ubiquitous approximate nearest neighbor search proble2)28¢#3] and the
references therein). In the approximate nearest neighbor search problem we aregil/esm metric space
(X, dx), and a subset ¢ X. The goal is to preprocess the data pomso that given a query poixte X\ Y
we quickly return a poiny € Y which is ac-approximate nearest neighborxfi.e. dx(x,y) < cdx(x,Y).
More generally, one might want to find the second closest poixirteY, and so forth (this problem has been
studied extensively in computational geometry, see for exar@plelp other words, by ordering the points
in X in increasing distance from € X we induce groximity rankingof the points ofX. Each point ofX
induces a dferent ranking of this type, and computingftieiently is a natural generalization of the nearest
neighbor problem. Using our new Ramsey partitions we design the following data structure for solving this
problem approximately:

Theorem 1.3.Fix k > 1, and ann-point metric spacéX, dx). Then there exist a data structure which can be
preprocessed in tim@(kn2+1/ Klog n), uses onlyO (kn1+1/ k) storage space, and supports the following type
of queries: Giverx € X, have “fast access” to a permutation of9 of X satisfying for evernl <i < j <n,
dx (x 709(i)) < O(K) - dx (x, 7(j)). By “fast access” tor® we mean that we can do the following:

1. Given a pointx € X, andi € {1, ..., n}, findz™(i) in constant time.

2. Foranyx,u € X, computej € {1,...,n} such thatr®(j) = uin constant time.

As is clear from the above discussion, the present paper is a combination of results in pure mathematics,
as well as the theory of data structures. This exemplifies the close interplay between geometry and computer
science, which has become a major driving force in modern research in these areas. Thus, this paper “caters”
to two different communities, and we putert into making it accessible to both.

2 Ramsey partitions and their equivalence to the metric Ramsey problem

Let (X, dx) be a metric space. In what follows fare X andr > 0 we letBx(x,r) = {y € X : dx(x,y) < r} be
theclosedball of radiusr centered ak. Given a partitionZ of X andx € X we denote by (x) the unigue
element of%? containingx. ForA > 0 we say that?’ is A-bounded if for everyC € &2, diamC) < A. A
partition treeof X is a sequence of partitiofs?y},” , of X such that?p = {X}, for allk > O the partition%

is 8 X diam(X)-bounded, and?,, is a refinement of? (the choice of 8 as the base of the exponent in this



definition is convenient, but does not play a crucial role here).sFpr> 0 we shall say that a probability
distribution Pr over partition tregs?«},’ , of X is completelys-padded with exponentif for every x € X,

Pr[v ke N, Bx(x g8 diam(X)) ¢ Z(x)| = IX|7.

We shall call such probability distributions over partition tr&ssnsey partitions

The following lemma shows that the existence of good Ramsey partitions implies a solution to the metric
Ramsey problem. In fact, it is possible to prove the converse direction, i.e. that the metric Ramsey theorem
implies the existence of good Ramsey partitions (with appropriate dependence on the various parameters).
We defer the proof of this implication to Appends:as it will not be used in this paper due to the fact that
in Sectiori3 we will construct directly optimal Ramsey partitions.

Lemma 2.1. Let (X, dx) be ann-point metric space which admits a distribution over partition trees which
is completely3-padded with exponent Then there exists a subsétc X with |Y| > n* which is8/3
equivaleri to an ultrametric.

Proof. We may assume without loss of generality that digjng 1. Let {Z}, be a distribution over
partition trees ofX which is completely3-padded with exponent. We define an ultrametrip on X as
follows. Forx,y € X let k be the largest integer for whic#(x) = Z(y), and sefp(x,y) = 87X Itis
straightforward to check thatis indeed an ultrametric. Consider the random sul§setX given by

Y:{xeX: ¥YkeN, Bx(x,ﬁ-8‘k)§9k(x)}.

Then
EIY|= > Pr[v ke N, By(x8- 8 diam()) € #(x)] = n*.

XeX

We can therefore choodec X with |Y| > n'~” such that for alk € Y and allk > 0 we haveBy (x,ﬁ . 8"‘) -
Zk(X). Fix x,y € X, and letk be the largest integer for whict(x) = Z(y). Thendx(xy) <
diam(Z(x)) < 87 = p(x,y). On the other hand, ik € X andy € Y then, sinceZ,1(X) # Z1(Y),
the choice ofY implies thatx ¢ Bx (y.3- 871). Thusdx(x.y) > 8- 871 = £p(x.y). It follows that the
metricsdy andp are equivalent oiY with distortion §2. m|

3 Constructing optimal Ramsey partitions

The following lemma gives improved bounds on the “padding probability” of a distribution over partitions
which was discovered by Calinescu, Kdfland Rabani in9].

Lemma 3.1. Let(X, dx) be a finite metric space. Then for evéry- 0 there exists a probability distribution
ProverA-bounded partitions oKX such that for everp) <t < A/8 and everyx € X,
Bx(x A/8)|\ &

IBx(x, A/ )I) ' (1)

Pr[Bx (x.t) ¢ Z(X)] Z( 1Bx(x, A)l

'Here, and in what follows, fdb > 1 we say that two metric spaceX () and (¥, dy) areD-equivalent if there exists a bijection
f : X — Y and a scaling facto€ > 0 such that for alk,y € X we haveCdx(x,y) < dy(f(X), f(y)) < CDdx(X, y).



Remark 3.1. The distribution over partitions used in the proof of Lem#&diis precisely the distribution
introduced by Calinescu, Kaffiband Rabani in9]. In [17] Fakcharoenphol, Rao and Talwar proved the
following estimate for the same distribution

Pr[Bx (xt) € Z(x)] >1-0 t log [Bx(xA) ) )

A7 Bx(x A/8)
Clearly the boundl) is stronger thand), and in particular it yields a non-trivial estimate even for large
values oft for which the lower bound in2) is negative. This improvement is crucial for our proof of
Theoreml.l. The use of the “local ratio of balls” (or “local growth”) in the estima2} ¢f Fakcharoenphol,
Rao and Talwar was a fundamental breakthrough, which, apart from their striking applicatiod, ings
since found several applications in mathematics and computer scienc23s24; [1]).

Proof of Lemmé.1. Write X = {xq,...,X%n}. Let R be chosen uniformly at random from the interval
[A/4,A/2], and letr be a permutation ofl, ..., n} chosen uniformly at random from all such permuta-
tions (here, and in what follow® andn are independent). Defin@; := Bx (Xx1), R) and inductively for
2<j<n,

j-1

Cj = Bx (X,r(j), R) \ U Ci.

i=1

Finally we let&? := {C4,...,Cn} \ {0}. Clearly £ is a (randomN\-bounded partition oiX.
For everyr € [A/4,A/2],

IBx (X, 1 —1)]

PrBx (0 € POIR=1] 2 P

3)
Indeed, ifR = r, then the triangle inequality implies that if in the random order induced by the partition
on the points of the baBx(x, r + t) the minimal element is from the bdBx(x, r — t), thenBx (x,t) € £(X)
_(secT Flgu(g)-:‘L for a schematic description of this situation). This event happens with probq@ﬁ%,
implying (3).

o

Figure 1:A schematic description of the lower bound@). The clusters that are induced by points which lie outside
the ballBx(x,r + t), such ag, cannot touch the baBy(x,t). On the other hand, if a point frofx(x,r — t), such as

a, appeared first in the random order among the poinBxiix, r + t) then its cluster will “swallow” the balBx(x, t).
The probability for this to happen @H Only points in the shaded region can split the IB(x, t).



Write % =k + B, whereg € [0, 1) andk is a positive integer. Then

A2 B
PriBx(xt) ¢ 2(¥)] 2 %fm %dr (4)
AT [ERB(r -t 4 [T Bx(xr - 1)
- Zj 0L+2jt IBx(X,f+t)|dr+_j%:+2kt|Bx(X,r+t)|dr
. fkal’Bx x +2]t+s t)‘ds+ﬂ(é_ZKt)‘Bx(x,%+2kt—t)’
A Jo 10|Bx x, 4 +2]t+s+t)| A\4 |Bx(X,%+t)|
I (2 k—l‘BX x,%+2jt+s—t)’ i ( 8kt)|Bx(x,%+2kt—t)’
> — +|1-— (5)
A Jo Jo‘Bx X, 2 +2]t+s+t’ A |Bx(x,%+t)’
~ 4k 2t |Bx X,% + S-— t)| : . (1 8kt) |BX (X, % + 2kt — t)|
A |Bx(x,%+2t(k—1)+s+t)’ |Bx(X,%+t)’
‘Bx(x,%_t)’ 1k (1 Skt)’Bx(x,%+2kt—t)‘
A |Bx(x,%+2kt+t)| A |Bx x%+t)|
A _ s _
. ’Bx(x,4 t)| .|Bx X, & + 2kt t| ©
»’Bx(x,%+2kt+t)| |Bx x,§+t
_ ﬁ(é—k—l)
[Bx (x4~ 1) |Bx ,4+2kt—t| |Bx (x4 + 2t —t)[]*
- »’Bx(x,%+2kt+t)| |Bx ,7+t)| |Bx x,%+t)’
16t
i N
S Bx(x§ -9 ’ @
»'Bx(X,%+t)|

where in @) we usedd), in (5) we used the arithmetic me@eometric mean inequality, i®)(we used the
elementary inequalitya + (1 — 6)b > a’b’~?, which holds for alb € [0, 1] anda, b > 0, and in [7) we used

the fact thatg — k - 1 is negative.

The following theorem, in conjunction with Lemr@al, implies Theoreni. 1.

O

Theorem 3.2. For everya > 1, every finite metric spadgX, dx) admits a completel§/« padded random

partition tree with exponertt6/a.

Proof. Fix @ > 1. Without loss of generality we may assume that di@m€ 1. We construct a partition
tree{dkl_, of X as follows. Setp = {X}. Having definedsy we let #,; be a partition as in Lemmia.1

with A = 8% andt = A/ (the random partition?.1 is chosen independently of the random partitions

P, ..., ). Defineéi,1 to be the common refinement &f and %1, i.e.

Er1 ={CNC' : Ceé, C € Pl



The construction implies that for everye X and everyk > 0 we havegi1(X) = &k(X) N P1(X). Thus
one proves inductively that

—k k
VkeN, Bx(x 8—) C (X)) = VkeN, Bx(x 8—) C 8k(X).
From LemmaB.1and the independence %}, , it follows that

—k

—k
Pr|V ke N, Bx (x, 8—) - é”k(x)]
[07

Pr[v ke N, Bx (x, 87) - @k(x)]

ﬁ Pr [Bx (x ;k) C Wk(x)]

k=1

Bx(x 8|
- lk_ﬂ Bx(8 W) ]

16 _16
[Bx(X,1/8) "« > [X]| «. O

v

4 Applications to proximity data structures

In this section we show how Theore®r can be applied to the design of various proximity data structures,
which are listed below. Before doing so we shall recall some standard facts about tree representations
of ultrametrics, all of which can be found in the discussion5h [Any finite ultrametric K, p) can be
represented by a rooted trée= (V, E) with labelsA : V — (0, «), whose leaves ar¥, and such that if

u,v € V andv is a child ofu thenA(v) < A(u). Givenx,y € X we then have(x,y) = A (Ica(x,y)), where

Ica(x, y) is the least common ancestoroéndy in T. Fork > 1 the labelled tree described above is called

a k-HST (hierarchically well separated tree) if its labels satisfy the stronger decay confiftiprx A(“)

whenevew is a child ofu. The treeT is called an exadt-HST if we actually have an equaliy(v) = A(”)
wheneverw is a child ofu. Lemma 3.5 inp] implies that anyn-point ultrametric ik-equivalent to a metric
onk-HST which can be computed in tin@(n).

We start by proving several structural lemmas which will play a crucial role in the design of our new
data structures.

Lemma 4.1 (Extending ultrametrics)Let (X, dx) be a finite metric space, and> 1. Fix0 # Y C X, and
assume that there exits an ultrametrion Y such that for every,y € Y, dx(X,y) < p(X,y) < adx(X,y).
Then there exists an ultrametipcdefined on all oK such that for every,y € X we havedx(x,y) < p(x,y),
and ifx e X andy € Y thenp(x, y) < 6adx(X,Y).

Proof. Let T = (V, E) be the 1-HST representation of with labelsA : V — (0, ). In other words, the
leaves ofT areY, and for everyx,y € Y we haveA(lca(x,y)) = p(X,y). It will be convenient to augmerit

by adding an incoming edge to the root witfparent(root))= co. This clearly does not change the induced
metric onY. For everyx € X\ Y lety € Y be its closest point itY, i.e. dx(X,y) = dx(X,Y). Letu be the
least ancestor offor which A(u) > dx(X, y) (such au must exist because we added the incoming edge to the
root). Letv be the child ofu along the path connectingandy. We add a vertew on the edgégu, v} whose
label isdx (X, y), and conneckto T as a child ofv. The resulting tree is clearly still a 1-HST. Repeating this
procedure for every € X \ Y we obtain a 1-HSTT whose leaves ar¥. Denote the labels of by A.



Fix x,y € X, and letx’, y’ € Y the nearest neighbors »fy (respectively) used in the above construction.
Then

A (Icaf(x, y)) max{Z (Icaf(x, x’)) A (Icaf(y, ;/)) A (Icaf(x’, )/))}
max{dx(x, X), dx(y,y"), dx(X, ¥)}
dx(x, X) + dx(y. ¥') + dx(X.y’)

3
> % dx(X, y). (8)

\2

(\2

_Inthe reverse direction, K€ X andy € Y letx’ € Y be the closest point i¥ to x used in the construction
of T. Thendx(X',y) < dx(X’, X) + dx(X,y) < 2dx(x,y). If Icaz(y, X') is an ancestor dtas+(x, x') then

A(lcaz(x.y)) = A(lcar(X.y)) = p(X.Y) < @ dx(X.y) < 20 - dx(X.Y). (9)

If, on the other handcasz(y, X') is a descendant déag(x, X’) then
A(lcaz(x.y)) = A(lcap(x X)) = dx(x, X) < dx(x.Y). (10)

Scaling the labels of by a factor of 3, the required result is a combination8)f (9) and (L0). m|

The following lemma is a structural result on the existence of a certain distribution over decreasing
chains of subsets of a finite metric space. In what follows we shall call such a distribusitmechastic
Ramsey chainA schematic description of this notion, and the way it is used in the ensuing arguments, is
presented in Figur2 below.

Lemma 4.2(Stochastic Ramsey chaind)et (X, dx) be ann-point metric space ankl > 1. Then there exists
a distribution over decreasing sequences of subBetsXg 2 X; 2 Xo--- 2 Xg = 0 (sitself is a random
variable), such that for alp > —1/k,

s-1 Kk
[P < (max{ 1}) Pk (11)
; 1+ pk

and such that for each € {1,..., s} there exists an ultrametrip; on X satisfying for every,y € X,
pi(xy) > dx(x,y), and ifx e X andy € Xj_1 \ X; thenpj(x,y) < O(K) - dx(x, ).

E

Remark 4.1. In what follows we will only use the casgsc {0, 1, 2} in Lemma4.2. Observe that fop = 0,
(112) is simply the estimat&s < kn'/K,

Proof of Lemm@.2. By Theoremi3.2 and the proof of Lemma.1 there is a distribution over subseis C
Xo such thatE|Y;| > n*~1k and there exists an ultrametrig on Y; such that everyk,y e Y; satisfy
dx(x,Y) < p1(x.y) < O(K) - dx(x,y). By Lemma4.1we may assume that is defined on all o, for every
X,y € Xwe havep1(X,y) > dx(x,y), and ifx € Xandy € Y thenp1(x,y) < O(K)-dx(x, y). DefineX; = Xo\Y1
and apply the same reasoningdg obtaining a random subsét C Xo\Y; and an ultrametrip,. Continuing
in this manner until we arrive at the empty set, we see that there are disjoint sifgsets,Ys € X, and

for eachj an ultrametricoj on X, such that forx,y € X we havepj(x,y) > dx(x,y), and forx € X,
y € Yj we havepj(x,y) < O(K) - dx(x,y). Additionally, writing X; := X\ Uij=1Yia we have the estimate

E[|Yj||Y1, " .,Yj_l] > |Xj_a [T Yk,



The proof of (1) is by induction om. Forn = 1 the claim is obvious, and if > 1 then by the inductive
hypothesis

s-1
k
P p . p+1/k
E ;'X” Yi| < n +(max{1+pk,l}) X4
p+1/k
= nP+|max K 14| nP+i/k 1—|Y—1I
1+ pk n
k . 1 Y1l
p .nPr/k(q — - L
< n +(max{l+pk,1}) n (1 (mln{p+k,1}) n)
k
— . nP+1/k p _ APp-1+1/k
(max{1+ oK’ 1}) n +nf-n [Y1].
Taking expectation with respect ¥ gives the required result. m|

Observation 4.3. If one does not mind losing a factor @f{logn) in the construction time and storage of
the Ramsey chain, then an alternative to Lendn24s to randomly and independently samﬁ]énl/k log n)
ultrametrics from the Ramsey partitions.

Before passing to the description of our new data structures, we need to say a few words about the
algorithmic implementation of Lemm&2 (this will be the central preprocessing step in our constructions).
The computational model in which we will be working is the RAM model, which is standard in the context
of our type of data-structure problems (see for exan@p | In fact, we can settle for weaker computational
models such as the “Unit cost floating-point word RAM model” — a detailed discussion of these issues can
be found in Section 2.2. oR0].

The natural implementation of the Calinescu-Ké&Rabani (CKR) random partition used in the proof
of Lemma3.1 takesO (nz) time. Denote byp = ®(X) the aspect ratio oX, i.e. the diameter oX divided
by the minimal positive distance . The construction of the distribution over partition trees in the proof of
Theoreni3.2 requires performin@(log ®) such decompositions. This results@r(n2 log CD) preprocessing
time to sample one patrtition tree from the distribution. Using a standard technique (described for example
in [20, Sections 3.2-3.3]), we dispense with the dependence on the aspect ratio and obtain that the expected
preprocessing time of one partition treeﬁﬁn2 log n). Since the argument ii2(] is presented in a slightly
different context, we shall briefly sketch it here.

We start by constructing an ultrametgi@n X, represented by an HS, such that for every,y € X,

dx(%,Y) < p(xy) < ndx(x,y). The fact that such a tree exists is containedbirLemma 3.6], and it can be
constructed in tim@® n2) using the Minimum Spanning Tree algorithm. This implementation is dor0jn |
Section 3.2]. We then apply the CKR random partition with diaméatas follows: Instead of applying it to
the points inX, we apply it to the vertices of H for which

A(u) < % < A (parent(r)). (12)

Each such verten represents all the subtree rootedidin particular, we can choose arbitrary leaf descen-
dants to calculate distances — these distances are calculated using thelg)etnd they are all assigned

to the same cluster asin the resulting partition. This is essentially an application of the algorithm to an
appropriate quotient ok (see the discussion ii27]). We actually apply a weighted version of the CKR
decomposition in the spirit 0B, in which, in the choice of random permutation, each vettes above



is chosen with probability proportional to the number of leaves which are descendan{saté that this
change alters the guarantee of the partition only slightly: We will obtain clusters bounc(édenZ)A,
and in the estimate on the padding probability the radii of the balls is changed by only a facteryn{}.
We also do not process each scale, but rather work in “event driven mode”: Vertiekarefput in a non
decreasing order according to their labels in a queue. Each time we pop a newwemnekpartition the
spaces at all the scales in the rangéu), n°A(u)], for which we have not done so already. In doing so
we dfectively skip “irrelevant” scales. To estimate the running time of this procedure note that the CKR
decomposition at scale 8akes timeO(miZ), wherem is the number of vertices of H satisfying (12) with
A = 8. Note also that each vertex f participates in at mogD(logn) such CKR decompositions, so
>im = O(nlogn). Hence the running time of the sampling procedure in Lerdmds up to a constant
factor ¥ ¢ = O(n?logn).

The Ramsey chain in Lemr#a2 will be used in two diferent ways in the ensuing constructions. For our
approximate distance oracle data structure we will just need that the ultrapesidefined onX;_; (and
not all of X). Thus, by the above argument, and Len#ng the expected preprocessing time in this case
is O(E IIXI? log|X;|) = O(n**/*logn) and the expected storage space (& Iy IXj[) = O(nt+1/k),
For the purpose of our approximate ranking data structure we will really need the rnpgtiicbe defined
on all of X. Thus in this case the expected preprocessing time W'ﬂ])(m? logn- Es) = O(kn2+1/k log n),

and the expected storage spac® & - Es) = O(kn1+1/ k).

1) Approximate distance oracles. Ourimproved approximate distance oracle is contained in Thebrgm
which we now prove.

Proof of Theorerd.2. We shall use the notation in the statement of Lenthfa Let T; = (Vj, E;) and
Aj 1 Vj — (0, ) be the HST representation of the ultrametri¢which was actually constructed explicitly
in the proofs of Lemm2.1and Lemm&.2). The usefulness of the tree representation stems from the fact
that it very easy to handle algorithmically. In particular there exists a simple scheme that takes a tree and
preprocesses itin linear time so that it is possible to compute the least common ancestor of two given nodes
in constant time (se&l, 6]). Hence, we can preprocess any 1-HST so that the distance between every two
points can be computed @(1) time.

For every pointx € X let iy be the largest index for whick € X;,_1. Thus, in particularx € Y;,. We
further maintain for every € X a vector (in the sense of data-structunes), of lengthiy (with O(1) time
direct access), such that fioe {0, ..., ix— 1}, veg]i] is a pointer to the leaf representingn T;. Now, given
a queryx,y € X assume without loss of generality that< iy. It follows thatx,y € X; _1. We locate the
leavesx'= veg(ix], andy = veg/[iy] in T;,, and then computa(lca (X, ) to obtain arO(k) approximation
to dx(x,y). Observe that the above data structure only requirés be defined orXj_; (and satisfying the
conclusion of Lemmd.2for X,y € X;_1). The expected preprocessing timé)'énzwk log n). The size of

the above data structure@(:%_o|X;|), which is in expectatio® (nt*2/¥). -

Remark 4.2. Using the distributed labeling for the least common ancestor operation on trees oi23gleg [

the procedure described in the proof of Theorg/@can be easily converted todistance labelingdata
structure (we refer ta3d2, Section 3.5] for a description of this problem). We shall not pursue this direction
here, since while the resulting data structure is non-trivial, it does not seem to improve over the known
distance labeling schemaZ].
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Figure 2: A schematic description of Ramsey chains and the way they are used to construct approximate distance
oracles and approximate ranking data structuré&amsey chains are obtained by iteratively applying The@ein

and Lemmé.1to find a decreasing chain of subskts: Xo 2 X; 2 Xz - - 2 Xs = 0 such thaX; can be approximated

by a tree metrid j,1. The tre€T .4 is, in a sense, a “distance estimator” }qn X1 — it can be used to approximately
evaluate the distance from a point ) \ Xj,; to any other point inX;. These trees form an array which is an
approximate distance oracle. In the case of approximate ranking we also need to extendThe tcea tree on the

entire spaceX using Lemmad.1l. The nodes that were added to these trees are illustrated by empty circles, and the
dotted lines are their connections to the original tree.

2) Approximate ranking. Before proceeding to our-approximate ranking data structure (TheoreRg)
we recall the setting of the problem. ThinkingXfas a metric o1, ..., n}, and fixinge > 1, the goal here
is to associate with evenye X a permutationr® of {1, ..., n} such thatlx(x, 7¥(i)) < a - dx(x, 7™¥(j)) for
every 1< i < j < n. This relaxation of the exact proximity ranking induced by the meigi@llows us to
gain storage fficiency, while enabling fast access to this data. By fast access we mean that we can preform
the following tasks:
1. Given an element € X, andi € {1, ..., n}, find 7™ (i) in O(1) time.
2. Given an elemern € X andy € X, find numbeii € {1,...,n}, such thatt® (i) =y, in O(1) time.

We also require the following lemma.

Lemma 4.4. Let T = (V,E) be a rooted tree witim leaves. Forv € V, let Zr(v) be the set of leaves in
the subtree rooted at, and denote’t(v) = | £ (V). Then there exists a data structure, that we Gille-
Ancestor, which can be constructed in tin@n), so as to answer in tim@(1) the following query: Given
¢ € N and a leafx € V, find an ancestou of x such thatét(u) < £ < {¢(parent())). Here we use the
conventior¢(parent(root))= co.

To the best of our knowledge, the data structure described in Lehvbhas not been previously studied.
We therefore include a proof of Lemrdad in AppendixAl, and proceed at this point to conclude the proof
of Theoreml.2

Proof of Theorerd.2. We shall use the notation in the statement of Lenthfa Let T; = (Vj, E;) and

Aj :Vj — (0, ) be the HST representation of the ultramegric\We may assume without loss of generality

that each of these trees is binary and does not contain a vertex which has only one child. Before presenting
the actual implementation of the data structure, let us explicitly describe the permut&ithmat the data
structure will use. For every internal vertex V; assign arbitrarily the value 0 to one of its children, and the
value 1 to the other. This induces a unique (lexicographical) order on the leaVgsMéxt, fix x € X and

ix such thatx € Y;,. The permutation™ is defined as follows. Starting from the leain T;,, we scan the
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path fromx to the root ofT; . On the way, when we reach a vertekom its childv, letw denote the sibling
of v, i.e. the other child ofl. We next output all the leafs which are descendants aécording to the total
order described above. Continuing in this manner until we reach the rdgtwe obtain a permutatiod®
of X.

We claim that the permutatior?® constructed above is @(k)-approximation to the proximity ranking
induced byx. Indeed, fixy,z € X such thaiCk - dx(x,y) < dx(x, 2), whereC is a large enough absolute
constant. We claim that will appear aftery in the order induced by®. This is true since the distances
from x are preserved up to a factor©fk) in the ultrametricT; . Thus for large enoug@ we are guaranteed
thatdr, (X, y) < dr, (X 2), and therefordcar, (X,2) is a proper ancestor d¢ar, (x,y). Hence in the order
just describe above,will be scanned before

We now turn to the description of the actual data structure, which is an enhancement of the data structure
constructed in the proof of Theoret?. As in the proof of Theorer.2 our data structure will consist of
a “vector of the tree§;”, where we maintain for eack € X a pointer to the leaf representingn eachT;.

The remaining description of our data structure will deal with eachTyeseparately. First of all, with each
vertexv € T; we also store the number of leaves which are the descendantsef|.Z7,(v)| (note that all

these numbers can be computeddfn) time using, say, depth-first search). With each leaT pfve also

store its index in the order described above. There is a reverse indexing by a vector for edghhete

allows, given an index, to find the corresponding leaffpin O(1) time. Each internal vertex contains a
pointer to its leftmost (smallest) and rightmost (largest) descendant leaves. This data structure can be clearly
constructed irf©(n) time using, e.g., depth-first transversal of the tree. We now give details on how to answer
the required queries using the “ammunition” we have listed above.

1. Using Lemmeé4.4, find an ancestov of x such thatfr,(v) < i < fr,(parenty)) in O(1) time. Let
u = parenty) (note thatv can not be the root). Let be the sibling ofv (i.e. the other child ofi).
Next we pick the leaf numbere(d:l— t’Tj(v)) + left(w) — 1, where leftv) is the index to the leftmost
descendant oiv.

2. Findu = Ica(x,y) (in O(1) time, using21, 6]). Let vandw be the children ofi, which are ancestors
of x andy, respectively. Returdr,(v) + ind(y) — left(w), where indy) is the index ofy in the total
order of the leaves of the tree.

This concludes the construction of our approximate ranking data structure. Because we need to have
the ultrametrico; defined on all ofX, the preprocessing time @(kn2+1/"log n) and the storage size is

O(kn1+1/"), as required. O

Remark 4.3. Our approximate ranking data structure can also be used in a nearest neighbor heuristic called
“Orchard Algorithm” 28] (see alsol13, Sec. 3.2]). In this algorithm the vanilla heuristic can be used to
obtain the exact proximity ranking, and requires stor@g{az). Using approximate ranking the storage
requirement can be significantly improved, though the query performance is somewhat weaker due to the
inaccuracy of the ranking lists.

3) Computing the Lipschitz constant. Here we describe a data structure for computing the Lipschitz
constant of a functiorf : X — Y, where {, dy) is an arbitrary metric space. WheX, flx) is adoubling
metric spacesee R2)), this problem was studied ir20]. In what follows we shall always assume that

is given inoracle form i.e. it is encoded in such a way that we can compute its value on a given point in
constant time.
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Lemma 4.5. There is an algorithm that, given ampoint ultrametric(U, dy) defined by the HST = (V, E)
(in particular U is the set of leaves df), an arbitrary metric spacgy, dy), and a mappingf : U — Y,
returns in timeO(n) a numberA > 0 satisfying||f||Lip > A> 1—16 | fllip.-
Proof. We assume thal is 4-HST. As remarked in the beginning of Sectiinthis can be achieved by
distorting the distances ld by a factor of at most 4, i@(n) time. We also assume that the tfestores for
every vertexy € V an arbitrary leak, € U which is a descendant &f(this can be easily computed @(n)
time). For a vertexi € V we denote by (u) its label (i.e.¥Y x,y € U, dy(x,y) = A(lca(x, y))).

The algorithm is as follows:

Lip-UM (T, f)
A<0
For every vertexai e T do
Letvy, ...V, be the children ofti.

Ay ( (%), T (X
A — max AsmaXZSiSrM}

OutputA.

A(u)

Clearly the algorithm runs in linear time (the total number of vertices in the tt®fisand each vertex
is visited at most twice). Furthermore, by construction the algorithm oufput§ f||Lip. It remains to prove
alower bound or. Let x, X2 € U be such tha f||jp = % and denotel = Ica(x, y). Letwy, w,
be the children ofi such thatx; € 25 (wy), andxy € 25 (w>). Letv; be the “first child” ofu as ordered by

the algorithm Lip-UM (notice that this vertex has special role). Then

dy (F (), F(x0)) dv(F (Xug), T (%)
A 2 ma] SRR, SUEETED)
o 1 dv(FOuw), FOw,))
-2 A(u)
o 1 av(f(x), F(x2)) — diam(f (£ (wi))) — diam(f (£7 (w2)))
-2 A(u) ’

If max {diam(f (.Zr (wy))), diam(f (Z5 (W2)))} < 2dy(f(x1), f(X2)), then we conclude that

as L. O(0a), F00)

4 A(u)
as needed. Otherwise, assuming that dig# (w1))) > %1 - dy(f(x1), f(x2)), there existz,Z € £ (wy)
such that L

dy(f@), f(Z)) 7 (f(xa), F(x2))
>
du(z 2) A(u)/4

which is a contradiction. m]

= [Ifllip,

Theorem 4.6. Givenk > 1, anyn-point metric spacé€X, dx) can be preprocessed in tinﬁe(nzwk log n),

yielding a data structure requiring storagé(n1+1/") which can answer irO(nl+1/k) time the following
query: Given a metric spadg, dy) and a mappingf : X — Y, compute a valué > 0, such thaf|f||.jp >
A= |IfllLip /O(K).
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Proof. The preprocessing is simply computing the tr{a‘ﬁs)jszl as in the proof of Theorer.2. Denote the
resulting ultrametrics by, p1), ..., (Us, ps). Givenf : X — Y, represent it ag; : U; — Y (as a mapping
gi is the same mapping as the restrictionfdb U;). Use Lemma}.5to compute an estimat® of ||gillLip,
and returrA := max A;. Since all the distances loj dominate the distances i || fl|Lip > llgillLip > Ai, SO

[IfllLip = A. On the other hand, lety € X be such thal f||Lip = W By Lemma4.2, there exists

i €{1,..., s} such thatly,(x,y) < O(K) - dx(x,y), and hencégillLip > IIfllLip/O(k), And SOA > 1—16 NgillLip =
IfllLip/O(K), as required. Since we once more only need that the ultramgtiscdefined orXj_; and not
on all of X, the preprocessing time and storage space are the same as in TAehr&y Lemma4.Z the
query time isO (%51 1X;l) = O(n**¥/¥) (we have aD(|X;|) time computation of the Lipschitz constant on
eachX;). O

5 Concluding Remarks

An swell separated pair decompositigiVSPD) of ann-point metric spaceX, dx) is a collection of pair

of subsetg(A;, B}, , A, B ¢ X, such that

1. Vx,y e Xif x# ythen & y) € UM, (A x Bj).
2. Foralli # j, (Ai xB)n (Aj X Bj) =0.
3. Foralli e {1,..., M}, dx(A;, B)) = s- maX{diam(A;), diam(B;)}.

The notion ofSsWSPD was first defined for Euclidean spaces in an influential paper of Callahan and
Kosaraju [L1], where it was shown that far-point subsets of a fixed dimensional Euclidean space there
exists such a collection of siZe(n) that can be constructed d(nlogn) time. Subsequently, this concept
has been used in many geometric algorithms (8310]), and is today considered to be a basic tool in com-
putational geometry. Recently the definition and thent construction of WSPD were generalized to the
more abstract setting of doubling metri&l[20]. These papers have further demonstrated the usefulness
of this tool (see alsallg] for a mathematical application).

It would be clearly desirable to have a notion similar to WSPD in general metrics. However, as formu-
lated above, no non-trivial WSPD is possible in “high dimensional” spaces, since any 2-WSPB pbat
equilateral space must be of si2¢n?). The present paper suggests that Ramsey partitions might be a par-
tial replacement of this notion which works for arbitrary metric spaces. Indeed, among the applications of
WSPD in fixed dimensional metrics are approximate ranking (though this application does not seem to have
appeared in print — it was pointed out to us by Sariel Har-Peled), approximate distance ar8cR}, [
spanners3l, 2C], and computation of the Lipschitz consta@f]. These applications have been obtained
for general metrics using Ramsey partitions in the present paper (spanners were not discussed here since our
approach does not seem to beat previously known constructions). We believe that this direction deserves
further scrutiny, as there are more applications of WSPD which might be transferable to general metrics
using Ramsey partitions. With is in mind it is worthwhile to note here that our procedure for constructing
stochastic Ramsey chains, as presented in Sedfitakes roughlyn®*/¥ time (up to logarithmic terms).

For applications it would be desirable to improve this construction tim@(t8). The construction time
of ceratin proximity data structures is a well studied topic in the computer science literature — see for
example(B4,(3Q].
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Appendices

A The Size-Ancestor data structure

In this appendix we prove Lemn#ad. Without loss of generality we assume that the Fedoes not contain
vertices with only one child. Indeed, such vertices will never be returned as an answer for a query, and thus
can be eliminated i®(n) time in a preprocessing step.

Our data structure is composed in a modular way of twiedint data structures, the first of which is
described in the following lemma, while the second is discussed in the proof of Ldmdrtieat will follow.

Lemma A.1l. Fix m € N, and letT be as in Lemm&.4. Then there exists a data structure which can
be preprocessed in tln@(n+ nlogn) “and answers in tim®(1) the following query: Giverf € N and

a leafx € V, find an ancestou of X such thattT(u) < £m < {(parent(l)). Here we use the convention
{(parent(root))= co.

Proof. Denote byX the set of leaves af. For every internal vertexe V, order its children non-increasingly
according to the number of leaves in the subtrees rooted at them. Such a choice of labels induces a unique
total order onX (the lexicographic order). Denote this orderfyand letf : {1,...,n} — X be the unique
increasing map in the total order For everyv € V, =1 (% (v)) is an interval of integers. Moreover, the

set of intervald f~1(#5(v)) : v € V) forms a laminar set, i.e. for every pair of intervals in this set either

one is contained in the other, or they are disjoint. For everyV write =1 (%5 (v)) = |y = [Ay, By], where

A, By, € NandA, < B,. Fori € {1,...,[n/m}}andj € {1,...,[n/(im)]} let Fi(j) be the set of vertices

v € V such thatl,| = im, I, N [(j — 1)im + 1, jim] # 0, and there is no descendantwsatisfying these two
conditions. Since at most two disjoint intervals of length at l@astan intersect a given interval of length

im, we see that for all, j, |Fi(j)| < 2.

Claim A.2. Letx € X be a leaf ofT, and¢ € N. Letu € V be the least ancestor affor which£1(u) > £m.

Then
€ {Ica(x,v) tveky ({%D}

Proof. If u e F ([12]) then sinces = Ica(x, u) there is nothing to prove. If on the other hand F, ([ 2])
then since we are assuming tiéau) > £m, andl, N [([%W ~1)tm+1, [f(x)] ¢m| # 0 (becausé (x) € 1),

it follows thatu has a descendamtin F[([f(x)]). Thusu = Ica(x, V), by the fact thatny ancestomw of v
satisfiest(w) > ¢1(v) = ém, and the minimality of.. |

The preprocessing of the data structure begins with ordering the children of vertices non-increasingly
according to the number of leaves in their subtrees. The following algorithm achieves it in linear time.
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SORT-CHILDREN (u)
Compute{f7(u)}uev Using depth first search.
SortV non-increasingly according G (-) (use bucket sort- sed3, Ch. 9]).
Let (v); be the seV sorted as above.
Initialize Yu € V, the listChildrenSortedList, = 0.
Fori =1to|V|do
Addv; to the end ofChildrenSortedListparenty).-

Computingf, and the interval$l },cy is now done by a depth first searchTothat respects the above
order of the children. We next compute(j) : i €{1,...,Iln/ml}, j € {1,...,[n/(im)]} using the following
algorithm:

SUBTREE-COUNT(u)
Letvy,..., Vv be the children ofi with [ly,| > [ly,| > --- > [ly,[.
Fori « [|lyl/m] down to||l\,|/m| + 1 do
For j « [Au/(im)] to [By/(im)] do
Add uto Fi(j)
Forh« 1tor -1do
Fori « [|ly,|/m] down to||ly,,,|/m| + 1 do
For j « [By,/(im)]+ 1to[By/(im)] do
Add uto Fi(j)
Forh « 1tor do call SUBTREE-COUNTY,).

Here is an informal explanation of the correctness of this algorithm. The only relevai; etghich will

contain the vertex € V are those in the range= [||ly,|/m] + 1, [|lyl//m]]. Above this rangé, does not meet

the size constraint, and below this range &flj) which intersect$, must also intersect one of the children

of u, which also satisfies the size constraint, in which case one of the descendantgldfe in F;(j). In

the aforementioned range, we adltb F;(j) only for j such that the interval [(— 1)im + 1, jim] does not
intersect one of the children afin a set of size larger tham. Here we use the fact that the intervals of the
children are sorted in non-increasing order according to their size. Regarding running time, this reasoning
implies that each vertex af, and each entry if;(j), is accessed by this algorithm only a constant number

of times, and each access involves only constant number of computation steps. So the running time is

Ln/m] [n/(im)1

0(n+ oS |Fi(j)|)=O(n+

i=1  j=1

nlogn
—

We conclude with the query procedure. Given a quegyX and{ € N, access$, ([@]) in O(1) time.

Next, for eachv € F, ([@]) check whethelca(x, v) is the required vertex (we are thus using here also the
data structure for computing thea of [21,6]. Observe also that singE;(j)| < 2, we only have a constant
number of checks to do). By Clai#.2/this will yield the required result. m|

By settingm = 1 in LemmaA.1, we obtain a data structure for ti$&ze-Ancestor problem withO(1)
query time, buO(nlogn) preprocessing time. To improve upon this, werset @(logn) in LemmaA.1,

16



and deal with the resulting gaps by enumerating all the possible ways in which the rermainibdeaves
can be added to the tree. Exact details are given below.

Proof of Lemm&.4. Fix m = [(logn)/4]. Each subseA C {0,...,m— 1} is represented as a numbek #
{0,...,2"— 1) by #A = Y;ca 2. We next construct in memory a vectenum of size 2", whereenum[#A]
is a vector of sizen, with integer index in the rangd., . .., m}, such thaenum[#A][i] = |AN{0,...,i—1}|.
Clearlyenumcan be constructed i@(2™m) = o(n) time.

For each vertexiwe compute and store:

e depth() which is the edge’s distance from the roouto

e (71(u), the number of of leaves in the subtree rooted. at

e The number #,, where

Ay ={ke{0.....m-1} : uhas an ancestor with exactly(u) + k descendant leavps

We also apply the level ancestor data-structure, that @fi@rpreprocessing time, answers in constant time
gueries of the form: Given a vertexand an integed, find an ancestor ai at depthd (if it exists) (such a
data structure is constructed if]). Lastly, we use the data structure from Lem#a

With all this machinary in place, a query for the least ancestor of axXdaving at least leaves
is answered in constant time as follows. First compute [£/m]. Apply a query to the data structure
of LemmaA.1, with x andqg, and obtainu, the least ancestor of such that/r(u) > gm If r(u) > ¢
thenu is the least ancestor withleaves, so the data-structure retutnsOtherwise,ft(u) < ¢, and let
a = enum[#A.][¢ — ¢ (U)]. Note that depth() — a is the depth of the least ancestorwfiaving at least
leaves, thus the query uses the level ancestor data-structure to return this ancestor. Clearly the whole query
takes a constant time.

It remains to argue that the data structure can be preprocessed in linear time. We already argued about
most parts of the data structure, afiqu) and depthf) are easy to compute in linear time. Thus we are
left with computing #, for each vertexu. This is done using a top-down scan of the tree (e.qg., depth first
search). The root is assighed with 1. Each non-root vertehose parent ig, is assigned

1 if fr(v) > ¢r(u)+m
#A, — .
#A, - 200M-60W 1 1 (mod 2") otherwise.

It is clear that this indeed computes# The relevant exponents are computed in advance and stored in a
lookup table. m|

Remark A.1. This data structure can be modified in a straightforward way to answer queries to the least
ancestor of a given size (in terms of the number of vertices in its subtree). It is also easy to extend it to
gueries which are non-leaf vertices.

B The metric Ramsey theorem implies the existence of Ramsey partitions

In this appendix we complete the discussion in Se@iby showing that the metric Ramsey theorem implies
the existence of good Ramsey partitions. The results here are not otherwise used in this paper.

Proposition B.1. Fix @ > 1 andy € (0, 1), and assume that evenypoint metric space has a subset of size
n¥ which isa-equivalent to an ultrametric. Then evempoint metric spacéX, dx) admits a distribution
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over partition tree§ %}, such that for everx e X,

1-y
ni-v -’

Pr[v ke N, Bx (x %% 8‘kd|am(x)) C ZX)| =

Proof. Let (X, dx) be ann-point metric space. The argument starts out similarly to the proof of Legna
Using the assumptions and Lemi#d iteratively, we find a decreasing chain of subséts Xg 2 X; 2
Xa--- 2 Xs = 0 and ultrametricpy, ..., ps on X, such that if we denot¥; = X;_1 \ X| then|Yj| > |Xj_1|w,
for x,y € X, pj(X,y) > dx(x,y), and forx € X,y € Y; we havepj(x,y) < 6adx(X,y). As in the proof of
Lemma4.2, it follows by induction that < ﬁ v,
By [5, Lemma 3.5] we may assume that the ultrameifican be represented by an exact 2-H§T=

(Vj, Ej), with vertex labels\r,, at the expense of replacing the factor 6 above by 12 Al.dte the label of
the root ofT;, and denote ok € N, A" {veVj: Ar(v) = 27%Aj). For everyv € Vj let %(v) be the

leaves ofT; which are descendants mf Thus@}‘ = {Dzﬂ,(v) S Ve A'J‘} is a 2’XA; bounded partition oK
(boundedness is in the metdg). Fix x € Yj, k € N and letv be the unique ancestor &fin A'j‘. If ze Xis
such thatdx(x, 2) < 12‘ 2"‘AJ thenAr, (IcaT (% z)) pi(X2) < 2"‘Aj. It follows thatzis a descendant of
v, so thaze 27K(x) = Zj(v). ThusZK(X) 2 Bx (x, 13; - 27%4)).

Passing to powers of 8 (i.e. choosing for edcthe integerf such that 8~1diam(x) < 2"‘AJ~ <
8~ diam(X) and indexing the above partitions usifignstead ofk), we have thus shown that for every
j €11,..., s} there is a partition tre{e%’li}:;o such that for everx € Y; we have for alk,

Bx (x % 8" I‘dlam(X)) C Z)(%).

Since the set¥y, ..., YscoverX, ands < rl‘l_% the required distribution over partition trees can be obtained
. o 1 o s o .
by choosing one of the partition treg#;}, ..., {2}, uniformly at random. O

Remark B.1. Motivated by the re-weighting argument ifhZ], it is possible to improve the lower bound
in PropositionB.1 for ¢ in a certain range. We shall now sketch this argument. It should be remarked,
however, that there are several variants of this re-weighting procedure (like re-weighting again at each step),
so it might be possible to slightly improve upon Proposit for a larger range of. We did not attempt
to optimize this argument here.

Fix n € (0,1) to be determined in the ensuing argument, andXetl) be ann-point metric space.
Duplicate each point ixX i’ times, obtaining a (semi-) metric spasewith n'*” points (this can be made
into a metric by applying an arbitrarily small perturbation). We shall define inductively a decreasing chain
of subsets” = X 2 X{ 2 X, 2 --- as follows. Forx € X, lethij(x) be the number of copies ofin X/
(thusho(x) = n7). Having definedX!, let Yi;; C X/ be a subset which is-equivalent to an ultrametric and
IYis1l > |X/|¥. We then defineX’, ; via

hiag(X) = Lhi(X)/2] there exists a copy ofin Y1
T () otherwise

Continue this procedure until we arrive at the empty set. Observe that

1
N | 4 - -
X/l < 1X]] |X.| s|X.|(1 2n<1+n)<1—w>)'
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Thus|X/| < n™7. (1- MT]M)I_l' It follows that this procedure terminates af@(n®’@-)logn)
steps, and by construction each pointXofappears in® (nlogn) of the subset¥;. As in the proof of
PropositiorB.1, by selecting each of thg uniformly at random we get a distribution over partition trees
{Z«} SUch that for everx € X,

Pr[v k e N, By (x, 1 s-kdiam(X)) c %’k(x)] > Q(L)

96¢ n(+md-y)
Optimizing over; € (0,1), we see that as long as-l > @1 we can choose = m yielding the
probabilistic estimate
Prlv ke, By[x — 8 X diam(X)| ¢ Z(¥)| = & 1 1
X\ 96 =R =2 =) logn niv )

This estimate is better than Propositisri when@ <1l-y< O( \/Iiﬁ)
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