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Abstract. It is shown that every measurable partition {A1, . . . , Ak} of R3 satisfies

k∑
i=1

∥∥∥∥∫
Ai

xe−
1
2
‖x‖22dx

∥∥∥∥2
2

6 9π2. (1)

Let {P1, P2, P3} be the partition of R2 into 120◦ sectors centered at the origin. The bound (1) is
sharp, with equality holding if Ai = Pi × R for i ∈ {1, 2, 3} and Ai = ∅ for i ∈ {4, . . . , k}. This
settles positively the 3-dimensional Propeller Conjecture of Khot and Naor (FOCS 2008). The
proof of (1) reduces the problem to a finite set of numerical inequalities which are then verified
with full rigor in a computer-assisted fashion. The main consequence (and motivation) of (1) is
complexity-theoretic: the Unique Games hardness threshold of the Kernel Clustering problem with
4× 4 centered and spherical hypothesis matrix equals 2π

3
.

Figure 1. The partition of R3 that maximizes the sum of squared lengths of Gauss-
ian moments is a “propeller”: three planar 120◦ sectors multiplied by an orthogonal
line, with the rest of the partition elements being empty.
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1. Introduction

For x = (x1, . . . , xm), y = (y1, . . . , ym) ∈ Rm let 〈x, y〉 =
∑m

i=1 xiyi denote their standard scalar

product, and let ‖x‖2 =
√
〈x, x〉 denote the corresponding Euclidean norm. The cross product of

x = (x1, x2, x3), y = (y1, y2, y3) ∈ R3 is denoted x×y = (x2y3−x3y2, x3y1−x1y3, x1y2−x2y1). The

Gaussian measure on Rm, i.e., the measure whose density is x 7→ (2π)−m/2e−‖x‖
2
2/2, is denoted γm.

The following theorem is our main result, asserting that among all measurable partitions of R3,
the “propeller partition” as depicted in Figure 1 maximizes the sum of the squared lengths of the
Gaussian moments associated to the members of the partition.

Theorem 1.1 (Main theorem; geometric formulation). Let {A1, . . . , Ak} be a partition of R3 into
Lebesgue measurable sets. For i ∈ {1, . . . , k} let ζi =

∫
Ai
xdγ3(x) ∈ R3 be the Gaussian moment of

the set Ai. Then
k∑
i=1

‖ζi‖22 6
9

8π
. (2)

Let {P1, P2, P3} be the partition of R2 into 120◦ sectors centered at the origin. The bound (2) cannot
be improved, with equality holding if Ai = Pi × R for i ∈ {1, 2, 3} and Ai = ∅ for i ∈ {4, . . . , k}.

The Propeller Conjecture was posed by Khot and Naor in [23] as part of their investigation of the
computational complexity of the Kernel Clustering problem from Machine Learning. Specifically,
they conjectured the validity of the bound (2) for measurable partitions of Rm for all m > 2. They
proved this conjecture for m = 2, and for m = 1 they showed that the right hand side of (2) can
be improved to the sharp bound 1

π . It is also shown in [23] that, for partitions of R3, proving (2)
when k = 4 implies the same conclusion for all k ∈ N. Correspondingly, for partitions of Rm it
suffices to prove this statement for k = m+ 1.

Before explaining the complexity-theoretic consequence of Theorem 1.1, which was the motiva-
tion of [23] for posing the Propeller Conjecture, we state two equivalent formulations of it: the first
probabilistic (a sharp estimate for the expected maximum of a Gaussian vector) and the second
analytic (a sharp Grothendieck inequality). The equivalence of these results to Theorem 1.1 was
established in [23]; for Theorem 1.2 below see [23, Lem. 3.7] and for Theorem 1.3 below see [23,
Thm. 1.1].

Theorem 1.2 (Main theorem; probabilistic formulation). Let (g1, g2, g3, g4) ∈ R4 be a mean zero
Gaussian vector (with arbitrary covariance matrix). Then∣∣∣∣E [ max

i∈{1,2,3,4}
gi

]∣∣∣∣ 6 3

2
√

2π

√√√√ 4∑
i=1

E
[
g2
i

]
. (3)

The bound (3) cannot be improved, with equality holding when the covariance matrix of (g1, g2, g3, g4)
equals

1

2


2 −1 −1 0
−1 2 −1 0
−1 −1 2 0
0 0 0 0

 .

The following analytic formulation of Theorem 1.1 is in terms of a sharp Grothendieck inequality.
Grothendieck [13] pioneered in 1953 the use of inequalities of this type in functional analysis, and
ever since then such inequalities have permeated many mathematical disciplines. See [23, 25, 24] for
an explanation of how the result below relates to a natural extension of the Grothendieck inequality
and to approximation algorithms.
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Theorem 1.3 (Main theorem; analytic formulation). Let (aij) be an n × n positive semidefinite

matrix with
∑n

i=1

∑n
j=1 aij = 0. For every {v1, v2, v3, v4} ⊆ S3 with

∑4
i=1 vi = 0 we have

max
x1,...,xn∈Sn−1

n∑
i=1

n∑
j=1

aij〈xi, xj〉 6
2π

3
max

y1,...,yn∈{v1,v2,v3,v4}

n∑
i=1

n∑
j=1

aij〈yi, yj〉. (4)

The bound (4) cannot be improved, with asymptotic equality holding when {v1, v2, v3, v4} are the
rows of the following matrix.

1

2
√

3


3 −1 −1 −1
−1 3 −1 −1
−1 −1 3 −1
−1 −1 −1 3

 .

See [25, Sec. 3.1] for a description of a family of n × n matrices (aij) for which equality in (4) is
asymptotically attained (as n→∞).

Inequality (4) was proved in [23]. Our new contribution is the assertion that (4) cannot be
improved, a statement that is equivalent to inequality (2) of Theorem 1.1. This is not the first time
that attempts to prove sharpness of a Grothendieck inequality led to an extremal geometric par-
titioning question. Notably, see König’s conjecture [27] as a step towards Krivine’s conjecture [29]
on the sharpness of his version of the classical Grothendieck inequality. Unlike the Propeller Con-
jecture in R3, these conjectures turned out to be false [8], but they do indicate the interconnection
between Grothendieck inequalities and extremal geometric partitioning problems.

Remark 1.4. An inspection of the arguments presented here, as well as the proofs of the results
of [23] that we use, shows that Theorems 1.1, 1.2, 1.3 have a corresponding uniqueness statement,
up to the obvious symmetries of the problem. For example, in Theorem 1.1, up to measure zero
corrections, orthogonal transformations, and reordering of {A1, . . . , Ak}, the only partition at which
there is equality in (2) is the propeller partition. Since this uniqueness statement is irrelevant for
the complexity-theoretic motivation of the Propeller Conjecture, we do not include it here.

The main consequence (and motivation) of Theorem 1.1 is complexity theoretic. To explain it we
briefly recall Khot’s Unique Games Conjecture (UGC), which asserts that for every ε ∈ (0, 1) there
exists a prime p = p(ε) ∈ N such that no polynomial time algorithm can perform the following
task. The input is a system of m linear equations in n variables x1, . . . , xn, each of which has
the form xi − xj ≡ cij mod p. The algorithm must determine whether there exists an assignment
of an integer value to each variable xi such that at least (1 − ε)m of the equations are satisfied,
or no assignment of such values can satisfy more than εm of the equations. If neither of these
possibilities occurs, then an arbitrary output of the algorithm is allowed. The UGC was introduced
by Khot in [20], though the above formulation of it, which is equivalent to the original one, is
due to [22]. The use of the UGC as a hardness hypothesis has become popular over the past
decade; we refer to Khot’s survey [21] for more information on this topic. Saying that the UGC
hardness threshold of an optimization problem O equals α ∈ [1,∞) means that for every ε ∈ (0, 1)
there exists a polynomial time algorithm that outputs a number that is guaranteed to be within a
multiplicative factor of α + ε from the solution of O, and that the existence of such an algorithm
with approximation guarantee of α− ε would contradict the UGC.

The Kernel Clustering problem is a clustering framework for covariance matrices that originated
in the work of Borgwardt, Gretton, Smola and Song [36] in the context of Machine Learning. This
problem is generic in the sense that it contains well-studied optimization problems as special cases,
and its versatility allows one to design a variety of algorithms tailor-made for particular applications
(many of these algorithms are at present shown [36] to be successful empirically, but not rigorously).
The input of the Kernel Clustering problem is an n × n symmetric positive semidefinite matrix
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A = (aij) and a k × k symmetric positive semidefinite matrix B = (bij) called the hypothesis
matrix. Think of n as very large and k as small, the goal being to cluster the entries of A into
a k × k matrix that is most correlated with the hypothesis matrix B. Formally, given a partition
{S1, . . . , Sk} of {1, . . . , n}, form the associated clustered version of A by summing the entries of A
over the blocks induced by the partition {S1, . . . , Sk}. One thus obtains a k × k matrix C = (cij)

given by cij =
∑

(s,t)∈Si×Sj ast. Let Clust(A|B) denote the maximum of
∑k

i=1

∑k
j=1 cijbij over all

partitions {S1, . . . , Sk} of {1, . . . , n}. We refer to [36, 23, 25, 24] for further explanation of this
clustering framework, as well as a discussion of important special cases arising from appropriate
choices of the hypothesis matrix B.

In what follows, an n× n symmetric positive semidefinite matrix A = (aij) is called centered if∑n
i=1

∑n
j=1 aij = 0, and it is called spherical if aii = 1 for all i ∈ {1, . . . , n}.

Theorem 1.5 (Main theorem; complexity theoretic formulation). Let O be the following optimiza-
tion problem. The input is an n×n symmetric positive semidefinite centered matrix A = (aij), and
also a 4 × 4 symmetric centered and spherical positive semidefinite matrix B = (bij). The goal is
to compute the quantity Clust(A|B). Then the UGC hardness threshold of O equals 2π

3 .

A polynomial time algorithm with approximation ratio 2π
3 +o(1) for the problem O of Theorem 1.5

was designed in [23]. The fact that Theorem 1.1 implies the matching UGC hardness result was
also proved in [23]. More generally, it was shown in [23] that the validity of the m-dimensional
Propeller Conjecture for some m > 3 would imply that the UGC hardness threshold of the variant
of O with B being an m×m matrix equals 8π

9

(
1− 1

m

)
.

This is not the first time that extremal problems in the measure space (Rm, γm) arose from
investigations in complexity theory; see for example the Majority is Stablest Conjecture of Khot,
Kindler, Mossel and O’Donnell [22], which was solved by Mossel, O’Donnell, and Oleszkiewicz [33]
via a reduction to a classical isoperimetric inequality of Borell [7]. A special feature of the Propeller
Conjecture is that its conclusion is quite surprising: despite allowing for partitions of Rm into m+1
sets, the optimal partition has only three nonempty sets. Note that this degeneracy property occurs
for the first time when m = 3, since in the result of [23] for partitions of R2 into three sets, all
three sets are indeed present in the optimal partition. Thus Theorem 1.1 is a proof of the first
nonintuitive case of the Propeller Conjecture: a verification of a prediction about a clean yet
unexpected geometric phenomenon that arose from an investigation in computational complexity.
To the best of our knowledge this is the first time that such a development occurred in this theory.

Our proof of Theorem 1.1 proceeds as follows. First, using reductions of the Propeller Conjecture
that were obtained in [23], we show that it suffices to prove an analogous partitioning problem for
the sphere S2. Namely, given a partition of S2 into four spherical triangles, the goal is to show that
the sum of the squares of lengths of the moments (with respect to the surface area measure on S2)
of these spherical triangles cannot exceed 9π2/4. Using additional geometric arguments, we further
reduce the question to an optimization problem over a three dimensional search space. We thus
obtain a coordinate system with three degrees of freedom, with respect to which one must solve
a rather complicated nonlinear optimization problem. After proving several additional estimates
that serve to further reduce the search space and give crucial modulus of continuity estimates,
we show that it suffices to check that the desired estimate holds true for a finite list of spherical
partitions (arising from an appropriate net of the search space). This list of inequalities that must
be proved is explicit but very large, so we proceed to check it in a fully rigorous computer-assisted
fashion. That is, our computation carefully accounts for all the rounding errors; equivalently the
computation can be viewed as an implementation in our setting of interval arithmetic (see [17]).

The role and implications of rigorous computer-assisted proofs has been discussed at length in
the literature; many such discussions appear in papers that establish striking results via a proof
that has a computer-assisted component (famous examples include [1, 2, 18, 11, 15, 12]). We see
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no reason to include here a new treatment of this topic. Zwick’s discussion in [39] is an excellent
reference for a well thought out explanation of the role of computer-assisted proofs in mathematics
and computer science1. The essence of the argument can be best conveyed by quoting Zwick
directly [39, Sec. 7]:

“A typical computer assisted proof, like ours, is essentially composed of two steps.
The first step says something like: “Here is program P. If program P, when executed
by an abstract computer, outputs YES, then the theorem is true, because . . . ”.
The second step says something like: “I ran program P and it said YES!”, or more
specifically: “I compiled program P using compiler A, under operating system B,
and ran it on processor C, again under operating system B. It said YES!”.”

Zwick then proceeds to explain that

“The first step is a conventional mathematical proof. It simply argues that a certain
program has certain properties. Such arguments are common in computer science.
Anyone who objects to this step of the proof should find a flaw, or a gap, in the
arguments made.”

Nevertheless, Zwick explains that the second step, i.e., the claim that the compilation of the program
gave the desired result, is not of the same nature:

“The second step is more problematic. It is certainly not a proof in the conventional
mathematical sense of the word. Many things can go wrong here. Program P may
not have been compiled correctly by compiler A. Or, due to some bug in operating
system B, the program did not run as intended. Or, processor C may suffer from a
design flaw that causes an incorrect execution of the program, or perhaps the specific
processor used has a short-circuit somewhere, and so on. It is possible to reduce
the likelihood of such problems by compiling the program using several different
compilers, and running it on different processors. But, while we may eventually be
able to produce mathematical correctness proofs for compilers, operating systems,
and the hardware design of the processors, it seems that we would never be able
to produce a mathematical proof that no hardware fault occurred during a specific
computation.

What we can do, is instruct the computer executing program P to print a trace
of the execution. This trace is a mathematical proof, though perhaps a not so
inspiring one. Like any mathematical proof it should be checked carefully to make
sure that it is correct. In many cases, however, this is not humanly possible. The
main problem with computer assisted proofs, therefore, is that they are usually too
long. They are also, in most cases, less insightful than conventional proofs.”

The bulk of the work presented in this article consists of conventional geometric and analytic
proofs, resulting in a reduction of the problem to a region where the desired inequality holds with
“room to spare”. This extra room allows us to complete the proof by checking a finite list of
concrete inequalities (that we write explicitly) on a certain finite net. Each such inequality can be
checked by hand, but the number of such checks is large, and it would be unrealistic (and probably
unilluminating) to complete this final check manually. The code that we used is publicly available
at the following url, which contains a command-line user interface so that interacting with the code
is easy.

http://math.nyu.edu/propeller/

1Zwick’s paper [39] is another instance of a computer-assisted proof in the context of approximation algorithms.
While the present article deals with an integrality gap lower bound for a semindefinite program (the left hand side
of (4)), Zwick proves an integrality gap upper bound, i.e., he uses a rigorous computer-assisted argument to show
that a certain algorithm performs well rather than to prove a hardness result.
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The code for this proof was run many times on several different computers. The technical require-
ments are quite modest, with the processor speed only affecting the total run time, and the total
memory requirement being less than 200 Mb. One can run the code on anything from a dedicated
compute server to a laptop computer (we did both). We ran the code in two different ways. The
simplest way was to run it in a serial fashion. That is, we ran the program as a single instance
which performed each step of the algorithm described in this paper one after the other. This took
37 hours to complete on a single processor of a compute server with 3.3 GhZ Intel Xenon processors.
The second way we ran it was to parallelize the algorithm by breaking up the domain of interest
into seven distinct portions and running separate instances on each. This procedure took eight
hours when split between seven 3.3 GhZ Intel Xenon processors. (We also ran the program split
between seven 2.4 GhZ AMD Opteron processors; this procedure took twelve hours.)

Needless to say, our proof of the Propeller Conjecture in R3 leaves something to be desired,
since we do not have a short explanation of the validity of the computations in the final step of
our proof. It is conceptually important to have a proof of this result, despite the fact that it
ends in a lengthy computation, not only because it yields interesting results in mathematics and
computational complexity. Importantly, since the Propeller Conjecture is a nonintuitive prediction
that arose from investigations in computational complexity, knowing that the first nonintuitive
case of this conjecture is indeed true puts the full Propeller Conjecture, and consequently the link
between geometry and algorithms that it describes, on a stronger footing. Thus, in addition to
yielding a remarkably involved UGC hardness result, our theorem will hopefully invigorate future
research on this problem that might lead to a traditional mathematical proof of the Propeller
Conjecture in R3 that can hopefully be extended to higher dimensions.

A key feature of the Propeller Conjecture is that it asserts that a natural optimization problem
exhibits intermediate-dimensional symmetry breaking. There are precedents of results of this type
that have been proved in the literature, mostly using Fourier-analytic methods. For this reason we
are hopeful that a clean and shorter proof of the Propeller Conjecture will eventually be found.
Consider for example the problem of sharp Khinchine inequalities: if ε1, . . . , εn are i.i.d. symmetric
random variables taking values in {−1, 1} and p ∈ [1, 2), the goal is to compute the minimum of
E [|
∑n

i=1 aiεi|
p] over all unit vectors a = (a1, . . . , an) ∈ Rn. For p = 1 it was conjectured by Little-

wood (see [16]) that this minimum occurs at a = (1, 1, 0, . . . , 0)/
√

2. Littlewood’s conjecture was
solved affirmatively by Szarek [37] (see also [38, 30]). Haagerup [14] proved that the same two di-
mensional symmetry breaking occurs for p ∈ [1, p0], where p0 = 1.87... is the solution of the equation
2Γ((p + 1)/2) =

√
π, i.e., the unit vector that minimizes E [|

∑n
i=1 aiεi|

p] equals (1, 1, 0, . . . , 0)/
√

2
for p ∈ [1, p0] and for p ∈ [p0, 2] this minimum occurs at a = (1, . . . , 1)/

√
n. Another famous result

of this type is Ball’s cube slicing theorem [3] (resolving a conjecture of Hensley [19]), asserting
that the hyperplane section of [−1, 1]n with maximal (n− 1)-dimensional volume is perpendicular
to (1, 1, 0, . . . , 0); see [35] for the corresponding result for complex scalars, as well as [4, 6] for
an analogous statement for projections. We refer to [34] for a unified treatment of the results of
Szarek, Haagerup, and Ball. There is also a conjecture of Milman predicting a symmetry breaking
phenomenon for extremal volumes of slabs in the cube [−1, 1]n; see [5, 28] for partial results along
these lines. We mentioned the above statements since we believe that among the literature they
are most similar to the Propeller Conjecture, and perhaps (with much more work) related methods
could be be used to address the Propeller Conjecture as well.

This article is organized as follows. In Section 2 we present the reduction of the Propeller
Conjecture to a certain optimization problem for spherical partitions, and we explain the main
ingredients of our proof, including the conventional geometric/analytic arguments, as well as the
computer-assisted component. The proofs of the geometric and analytic results leading to the
final computational step are contained in Section 3 and Section 4. Section 4.1 contains a detailed
explanation of how the numerical step is implemented so as to account for all possible rounding
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errors. We remark that our arguments extend mutatis mutandis to higher dimensions. For the sake
of simplicity we present the entire argument in R3, since while it is conceivable that the scheme
presented here can yield a computer-assisted proof of the Propeller Conjecture in higher dimensions,
at some fixed dimension the computer-assisted component of the proof will become unfeasible. Now
that we know that a nonintuitive case of the Propeller Conjecture is indeed correct, the next natural
step is to search for a proof that extends to all dimensions, rather than attempting to prove a few
more cases in low dimensions.

2. An overview of the proof of Theorem 1.1

From now on assume for the sake of eventually obtaining a contradiction that {Ai}4i=1 is a
partition of R3 into measurable sets that violates the propeller conjecture, i.e.,

4∑
i=1

∥∥∥∥∫
Ai

xdγ3(x)

∥∥∥∥2

2

>
9

8π
. (5)

Assume moreover that the maximum of
∑4

i=1

∥∥∥∫Bi xdγ3(x)
∥∥∥2

2
over all measurable partitions {Bi}4i=1

of R3 is attained at {Ai}4i=1. For a proof that this maximum is indeed attained, see [23, Lem. 3,1].
Using this maximality, it follows from [23, Lem. 3.3] that (up to measure zero corrections) the Ai
are cones with cusp at the origin, and if we write ζi =

∫
Ai
xdγ3(x) then ζ1 + ζ2 + ζ3 + ζ4 = 0 and

for each i ∈ {1, 2, 3, 4} we have

Ai =

{
x ∈ R3 : 〈x, ζi〉 = max

j∈{1,2,3,4}
〈x, ζj〉

}
. (6)

By [23, Lem. 3.3 & Cor. 3.4] the vectors {ζi}4i=1 are distinct, nonzero and not coplanar.
Since the sets in question are cones, it is beneficial to study them in terms of their intersection

with the sphere S2, i.e., define

Ti = Ai ∩ S2, (7)

and letting σ denote the surface area measure on S2 (thus σ(S2) = 4π), define

zi =

∫
Ti

xdσ(x) =
√

2π3 · ζi, (8)

where the last equality in (8) follows from integration in polar coordinates. Being a constant
multiple of the vectors {ζi}4i=1, the vectors {zi}4i=1 are also distinct, nonzero, not coplanar, and
satisfy z1 + z2 + z3 + z4 = 0. Moreover,

Ti
(6)∧(7)∧(8)

=

{
x ∈ S2 : 〈x, zi〉 = max

j∈{1,2,3,4}
〈x, zj〉

}
. (9)

Consequently,

∀i, j ∈ {1, 2, 3, 4}, x ∈ Ti ∩ Tj =⇒ 〈zi, x〉 = 〈zj , x〉. (10)

Fix ` ∈ {1, 2, 3, 4}. Since {zi}4i=1 are not coplanar there exists a unique v` ∈ S2 satisfying

∀i, j ∈ {1, 2, 3, 4}r {`}, 〈zi, v`〉 = 〈zj , v`〉 > 〈z`, v`〉. (11)

The vectors {v`}4`=1 are the vertices of the partition P = {T1, T2, T3, T4} of S2. A simple argument
presented in Section 3 shows that vi /∈ {−vj , vj} if i 6= j and each spherical triangle Ti is contained
in an open hemisphere of S2. Moreover, for distinct i, j, ` ∈ {1, 2, 3, 4} we have det(vi, vj , v`) 6= 0,
and if we define

θij = arccos(〈vi, vj〉) and Θij` = arccos

(〈
(vi × vj)
||vi × vj ||2

,
(vj × v`)
||vj × v`||2

〉)
, (12)
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then it is also argued in Section 3 that θij ,Θij` ∈ (0, π). Observe θij = θji, Θijk = Θkji, and Θij`

is the spherical angle, at vertex vj , of the spherical triangle with vertices {vi, vj , v`}; the cosine of
this angle is exactly the inner product of unit normals of the two planes containing {vi, vj , 0} and
{vj , v`, 0} respectively. See Figure 2 for a schematic description of the notation.

v2

θ13

v1

v3

θ23

θ12

(a)

v3

v2

v1

Θ213

v4

(b)

Figure 2. (a) Spherical triangle constructed with three great circles (b) Partition
of the sphere into four spherical triangles.

In order to proceed we need to have a formula for the spherical moment z4 in terms of the vertices
{v1, v2, v3} of the spherical triangle T4. In order to do so, assume that det(v1, v2, v3) > 0. Then

z4 =
1

2

(
θ12

v1 × v2

||v1 × v2||2
+ θ23

v2 × v3

||v2 × v3||2
+ θ31

v3 × v1

||v3 × v1||2

)
. (13)

Identity (13) was proved by Minchin in 1877; see [32, p. 259]. We also found identity (13) in [9],
which is a military publication that is not publicly available (it isn’t classified: we purchased
access to it). Since both references for (13) are hard to find, we include a brief derivation of it in
Proposition 3.2, using the Cauchy projection formula (see [26, p. 25]).

Using (13) and geometric arguments, we show in Lemma 3.5 that the vertex v4 is determined by
the vertices {v1, v2, v3} as follows; an analogous formula expresses each vertex of the partition in
terms of the other three vertices.

v4 = − 1√
λ

(
sin θ23

θ23
v1 +

sin θ13

θ13
v2 +

sin θ12

θ12
v3

)
,

where

λ =

∣∣∣∣∣∣∣∣sin θ23

θ23
v1 +

sin θ13

θ13
v2 +

sin θ12

θ12
v3

∣∣∣∣∣∣∣∣2
2

=
sin2 θ23

θ2
23

+
sin2 θ13

θ2
13

+
sin2 θ12

θ2
12

+ 2
sin θ23 sin θ13

θ23θ13
cos θ12 + 2

sin θ23 sin θ12

θ23θ12
cos θ13 + 2

sin θ12 sin θ13

θ12θ13
cos θ23. (14)

In Proposition 3.7 we derive the following restriction on products of opposite edges.

sin θ12 sin θ34

θ12θ34
=

sin θ13 sin θ24

θ13θ24
=

sin θ14 sin θ23

θ14θ23
.
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Also, in Lemma 3.9 we obtain the following expression for the objective function at the partition
P = {Ti}4i=1 as the sum of the squares of the angles between the vertices.

F (P ) = ‖z1‖22 + ‖z2‖22 + ‖z3‖22 + ‖z4‖22 = θ2
12 + θ2

13 + θ2
14 + θ2

23 + θ2
24 + θ2

34. (15)

Define

γ =
sin θ23

θ23
cos θ12 +

sin θ13

θ13
+

sin θ12

θ12
cos θ23. (16)

In Lemma 3.8 we obtain the following useful restriction on a single spherical triangle appearing in
the partition {T1, T2, T3, T4}.

cos

(√
λ− γ2

θ23θ12

sin θ23 sin θ12

)
= cos

(√
θ2

12 + θ2
23 + 2θ12θ23 cos Θ123

)
= − γ√

λ
, (17)

where λ is given in (14).
Observe that (17) is a restriction involving data from only one triangle T4, as we see by the

definitions of γ and λ. Moreover, by symmetry, every cyclic permutation of {θ12, θ23, θ13} must
also satisfy (17). And, every triangle of P must satisfy (17), with the indices of the θij substituted
appropriately. To understand the ramifications of (17) assume that θ12 = θ23 = θ13 =: θ. Then
(17) simplifies to

cos

(√
2(2 cos θ + 1)(1− cos θ)

θ

sin θ

)
= − 1√

3

√
2 cos θ + 1. (18)

The only θ ∈ (0, 2π/3) satisfying this equation are θ = arccos(−1/3) ≈ 1.9106332362490187, and
θ ≈ 1.5379684120790425. The first solution corresponds to the partition whose vertices are those
of a regular simplex inscribed in the sphere, and the second intuitively corresponds to a critical
point “between” the regular partition and the propeller partition (note that θ = 2π/3 implies
det(v1, v2, v3) = 0, and θ > 2π/3 cannot be achieved by a spherical triangle). The above special
values of θ will play an important role in the ensuing computations.

As explained in the discussion following Lemma 3.9, a combination of (15) and (17) can be used
to express the value of our objective function at the maximizing partition P in terms of the data
from a single spherical triangle in P . Specifically, we have

F (P ) = 3
(
θ2

12 + θ2
23 + θ2

13

)
+ 2 cos(Θ213)θ12θ13 + 2 cos(Θ123)θ12θ23 + 2 cos(Θ231)θ23θ13. (19)

In particular, it follows that the right hand side of (19) must be the same for each set of data for
all four triangles of P .

Up to now we only discussed identities that the extremal partition P must satisfy. In order to
proceed we need to prove some a priori estimates on the various parameters in question. First, let
M = max{θ12, θ13, θ23}. It follows from (19) that F (P ) 6 14M2 (using the fact that at least one
Θijk must be greater than π

3 ). Our contrapositive assumption (5) combined with (8) implies that

F (P ) > 9π2

4 , so we deduce that all the triangles in P must have an edge of length greater than
3π

2
√

14
> 5

4 . Additional arguments (that are significantly more involved technically) imply that for all

distinct i, j, ` ∈ {1, 2, 3, 4} we have θij 6 π − 1
2 (Lemma 3.12) and θij , sin Θij` >

1
10 (Lemma 3.16).

In Lemma 4.1 we prove that (θ12, θ13, θ23) must be outside the `2 ball of radius 1
100 centered at

(θ, θ, θ) for θ = arccos
(
−1

3

)
and θ = 1.53796841207904. This excludes from our search space balls

centered at the two solutions of (18) that were discussed above. In Lemma 4.2 we show that, up

to a relabeling of the spherical triangles T1, T2, T3, T4, we may assume that
√
λ > 9

50 .
It turns out that the above estimates suffice in order to conclude the proof of Theorem 1.1 via

a search over a sufficiently fine net. To explain this endgame, note that by the spherical law of
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cosines we have cos θ13 = cos θ12 cos θ23 +sin θ12 sin θ23 cos Θ123. It therefore follows from (14), (17),
(16) that if we define h, λ, γ : [0, π]3 → R by

λ(x, y, z) =
sin2 x

x
+

sin2 y

y
+

sin2 z

z
+ 2

sinx sin y

xy
cos z + 2

sinx sin z

xz
cos y + 2

sin y sin z

yz
cosx,

γ(x, y, z) =
sin z

z
cosx+

sin y

y
+

sinx

x
cos z,

h(x, y, z) =
√
λ(x, y, z) cos

(√
x2 + z2 + 2xz

cos y − cosx cos z

sinx sin z

)
+ γ(x, y, z),

then h(θ12, θ13, θ23) = 0. This identity must hold for all cyclic permutations of the indices {1, 2, 3},
so we also have the two identities h(θ13, θ23, θ12) = h(θ23, θ12, θ13) = 0. It follows that if we
define H = (H1, H2, H3) : [0, π]3 → R3 by H(x, y, z) = (h(y, z, x), h(x, y, z), h(z, x, y)) then at the
extremal partition P we have H(θ12, θ13, θ23) = 0.

Our strategy is therefore as follows. At every point q in the search space given by the constraints
described above (specifically, see the system of equations (67), excluding also the two balls described
in Lemma 4.1), we will show that either H(q) 6= 0 or F0(q) < 9π2/4, where F0 is given by the right
hand side of (19) (with the understanding that one expresses cos Θ123, cos Θ213, cos Θ231 in terms
of θ12, θ23, θ13 using the spherical law of cosines, so that F0 is a function of θ12, θ23, θ13). Due to the
above discussion, such an assertion will complete the proof of Theorem 1.1. Moreover, it turns out
that this assertion holds “with room to spare”, making a computer-assisted verification feasible.

To this end, we need to have estimates on the modulus of continuity of H and F0. Such esti-
mates are complicated but can be proved using elementary considerations; see Lemma 4.3 and the
discussion immediately following it. Consequently, if we are given a point q in our restricted search
space and τ ∈ (0, 1) for which either |H(q)| > τ or F0(q) < 9π2/4− τ , then it would follow that for
some r > 0 that depends on τ via our modulus of continuity estimates, in the entire ball of radius
r centered at q either H 6= 0 or F0 < 9π2/4.

¿From this procedure we achieve a process by which we can iteratively remove from our search
space macroscopically large regions of controlled size in which we are guaranteed that a coun-
terexample to the Propeller Conjecture cannot exist. Our program proceeds to remove such balls
until it eventually exhausts the entire search space, thus arriving at the conclusion that there is no
counterexample to the Propeller Conjecture.

In order to make such a procedure rigorous, we carefully account for all possible rounding errors.
We do this quite conservatively, i.e., while significantly overestimating the magnitude of all possible
errors, as explained in detail in Section 4.1. Note that our computer-assisted proof does not compute
any computationally complicated expressions such as, say, definite integrals or implicitly defined
functions: it only checks inequalities between expressions involving elementary combinations of
trigonometric functions and square roots.

In summary, the validity of the Propeller Conjecture in R3 has mainly conceptual implications,
and what remains open seems to be of a more technical nature: to perhaps find a clever transfor-
mation, e.g., as in Ball’s cube slicing theorem [3], that allows one to prove the theorem analytically
rather than resorting to a transversal of a net in a region where the desired inequality is actually
quite weak. At present, we have a clean geometric argument which addresses directly the region
where the Propeller Conjecture is most subtle, and in the remainder of the search space we do
something rather crude. This has two conceptual consequences: the Propeller Conjecture as a
nonintuitive link between complexity theory and geometry is correct, and moreover one has a geo-
metric/analytic proof of this conjecture in a region where it is tightest. Nevertheless, we are lacking
a technical idea that allows us to address the remaining region in a way that does not resort to
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“brute force”. It remains a challenge to find such an idea, with the hope that it will pave the way
to a proof of the Propeller Conjecture in all dimensions.

3. Proofs of basic identities and estimates

This section contains proofs the geometric identities and inequalities that were stated in Section 2.
Recall that we are assuming that P = {T1, T2, T3, T4} is a partition of S2 into four spherical
triangles, and that {zi}4i=1, as defined in (8), are the corresponding spherical moments. We are also
making the contrapositive assumption that our objective function

F (P ) = ‖z1‖22 + ‖z2‖22 + ‖z3‖22 + ‖z4‖22 (20)

(recall (15)) exceeds 9π2/4, which is the maximal value of F (·) that is predicted by the Propeller
Conjecture. We also assume that P maximizes F . The vertices of the partition {vi}4i=1 were defined
in Section 2, along with the angles θij and Θij` as given in (12).

Proposition 3.1. (a) z1 + z2 + z3 + z4 = 0.

(b) Suppose two triangles Ti, Tj ∈ P share an edge E = Ti ∩ Tj. Then for all e ∈ E we have
〈zi, e〉 = 〈zj , e〉. In particular, if ` /∈ {i, j} then 〈zi, v`〉 = 〈zj , v`〉.

(c) For all distinct i, j ∈ {1, 2, 3, 4} we have 〈zi, vi〉 = 〈−3zj , vi〉.
(d) For all distinct i, j ∈ {1, 2, 3, 4} we have vj /∈ {−vi, vi}.
(e) For all distinct i, j, ` ∈ {1, 2, 3, 4} we have det(vi, vj , v`) 6= 0 , each Ti is contained in an

open hemisphere, and 0 < θij ,Θij` < π.

Proof. Parts (a) and (b) were already proved in Section 2; for part (b) see (10). A combination
of (11) and part (a) implies part (c). For ` ∈ {1, 2, 3, 4} let Π` be the unique plane containing
{zi}i∈{1,2,3,4}r{`}. A vector is perpendicular to Π` if and only if it has equal inner product on

{zi}i∈{1,2,3,4}r{`}, so Rv` is also perpendicular to Π`. Since {zi}4i=1 are not coplanar the planes

{Π`}4`=1 have distinct perpendiculars. So v1, v2, v3, v4 are distinct with vi /∈ Rvj for i 6= j. This
establishes (d). For every ` ∈ {1, 2, 3, 4} consider the set

U` =

{
x ∈ S2 : min

i∈{1,2,3,4}r`
〈x, zi − z`〉 >

1

2
〈v`, zi − z`〉

}
.

It follows from (11) that U` is an open neighborhood of v`, and in combination with (9) we know
that

i ∈ {1, 2, 3, 4}r {`} =⇒ U` ∩ Ti =

{
x ∈ U` ∩ S2 : 〈x, zi〉 = max

j∈{1,2,3,4}r{`}
〈x, zj〉

}
. (21)

Write I = {1, 2, 3, 4}r{`}. For every distinct i, k ∈ {1, 2, 3, 4} the set {x ∈ S2 : 〈x, zi〉 > 〈x, zj〉} is
a half sphere, and therefore the set Ti,` = {x ∈ S2 : 〈x, zi〉 = maxj∈I〈x, zj〉} is strictly contained in
a half sphere (since the zj are distinct and nonzero). Note that ∂Ti,` is the union of two half circles
that meet at antipodal points, and v` is one of these antipodal points. So, the spherical angle of
Ti,` at the vertex v` is in (0, π). By (9) and (21) this spherical angle is identical for Ti,` and Ti. This
shows that Θi`j ∈ (0, π) for all distinct i, j, ` ∈ {1, 2, 3, 4}. Also θij ∈ (0, π) since vj /∈ {−vi, vi}.
Next, assume for the sake of contradiction that det(vi, vj , v`) = 0. Since vi /∈ Rvj for distinct
i, j ∈ {1, 2, 3, 4}, it follows that vi = αjvj + α`v` with αj , α` ∈ R r {0}. Hence vi × vj = α`v` × vj
with α` 6= 0, contradicting Θij` ∈ (0, π). We have already seen that Ti,` is contained a closed
hemisphere, and this containment can be chosen such that Ti,` intersected with the boundary of
the hemisphere is {v`,−v`}. But from (9) we know that Ti ⊆ Ti,` and Ti avoids a neighborhood of
{−v`}, so each Ti is contained in an open hemisphere. This concludes the proof of (e). �
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We now give an explicit formula for the spherical moments {zi}4i=1; as explained in Section 2,
this formula can be found in [32, p. 259] and [9, p. 6]. Since these references are hard to find, we
provide a proof.

Proposition 3.2. Suppose that the spherical triangle T4 ⊆ S2 has vertices {v1, v2, v3} satisfying
det(v1, v2, v3) > 0. Then the vector z4 =

∫
T4
xdσ ∈ R3 satisfies

z4 =
1

2

(
θ12

v1 × v2

||v1 × v2||2
+ θ23

v2 × v3

||v2 × v3||2
+ θ31

v3 × v1

||v3 × v1||2

)
. (22)

Consequently

〈z4, v1〉 =

〈
θ23

2

v2 × v3

||v2 × v3||2
, v1

〉
=
θ23 det(v1, v2, v3)

2 sin θ23
(23)

Proof. Fix y ∈ T4 r ∂T4. By definition of z4,

〈z4, y〉 =

∫
T4

〈x, y〉dσ(x). (24)

Let H ⊆ R3 be the convex hull of T4 ∪ {0} and let {Ui}3i=1 ⊆ R3 be half spaces through the origin

such that {x ∈ R3 : ||x||2 6 1}
⋂(⋂3

i=1 Ui

)
= H; see Figure 3.

v1

v3

v2

Figure 3. Spherical triangle together with three disc sectors, each containing {vi, vj , 0}.

Define Π: S2 → R2 so that Π(x) is the orthogonal projection of x ∈ S2 ⊆ R3 onto the unique
plane that is intersecting the origin and perpendicular to y. Applying the Cauchy projection formula
(see for example [26, p. 25]) to T4, we see that∫

T4

〈x, y〉dσ(x) = AreaR2Π(T4 ∩ {x ∈ S2 : 〈y, x〉 > 0})−AreaR2Π(T4 ∩ {x ∈ S2 : 〈y, x〉 6 0}). (25)

Define A = (T4 r ∂T4) ∩ {x ∈ S2 : 〈y, x〉 > 0} and B = (∂H) rA. Note that ∂H is the union of

T4 and three sectors of discs {Di}3i=1 such that Di ⊆ ∂Ui. Since y ∈
⋂3
i=1 Ui, the exterior normal

n(x) of x ∈ Di ⊆ ∂H has nonpositive inner product with y for i = 1, 2, 3. So, 〈n(x), y〉 > 0 for
x ∈ ∂H if and only if x ∈ A. Since H is convex, Π: A→ Π(∂H) and Π: B → Π(∂H) are bijections
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almost everywhere. Since ∂H = T4
⋃(⋃3

i=1Di

)
, the Cauchy projection formula applied to right

side of the identity AreaR2(Π(A)) = AreaR2(Π(B)) gives

AreaR2Π(T4 ∩ {x ∈ S2 : 〈y, x〉 > 0}) = AreaR2Π(T4 ∩ {x ∈ S2 : 〈y, x〉 6 0})

+
θ12

2

〈
y,

v1 × v2

||v1 × v2||2

〉
+
θ23

2

〈
y,

v2 × v3

||v2 × v3||2

〉
+
θ13

2

〈
y,

v3 × v1

||v3 × v1||2

〉
.

(26)

Since (26) holds for any y ∈ S2 ∩ T4, (24), (25) and (26) give (22). �

Note that the vectors in the determinant of (23) are assumed to have positive orientation. So,
when we apply this equation below we will need to respect orientations.

Corollary 3.3. Under the assumptions of Proposition 3.2, we have

‖z4‖22 =
1

4

(
θ2

12 + θ2
23 + θ2

13 − 2 cos(Θ213)θ12θ13 − 2 cos(Θ123)θ12θ23 − 2 cos(Θ231)θ23θ13

)
(27)

=
1

4

(
θ2

12 + θ2
23 + θ2

31 + 2
cos θ12 cos θ13 − cos θ23

sin θ12 sin θ13
θ12θ13

+2
cos θ12 cos θ23 − cos θ13

sin θ12 sin θ23
θ12θ23 + 2

cos θ23 cos θ13 − cos θ12

sin θ23 sin θ13
θ23θ13

)
. (28)

Proof. Apply (22), and then use either the vector identity 〈a× b, c× d〉 = 〈a, c〉〈b, d〉 − 〈a, d〉〈b, d〉,
or the spherical law of cosines. �

Corollary 3.4. For distinct i, j ∈ {1, 2, 3, 4} we have 〈zi, vj〉 > 0.

Proof. Let k, ` be such that det(vk, vj , v`) > 0, and apply (23) and Proposition 3.1(e). �

Lemma 3.5. Write 〈z4, v1〉 =: a, 〈z4, v2〉 =: b, 〈z4, v3〉 =: c and 〈z4, v4〉 =: −3d. Then the following
relation holds

1

a
v1 +

1

b
v2 +

1

c
v3 +

1

d
v4 = 0 (29)

Proof. By Proposition 3.1(e) we have det(v1, v2, v3) 6= 0, so we may write v4 =
∑3

i=1 αivi for some
α1, α2, α3 ∈ R. By Proposition 3.1(c),

d = 〈z1, v4〉 = 〈z2, v4〉 = 〈z3, v4〉.
Substituting in the expression v4 =

∑3
i=1 αivi and then applying Proposition 3.1(b) and (c) several

times, we get

d = −3aα1 + bα2 + cα3 = aα1 − 3bα2 + cα3 = aα1 + bα2 − 3cα3.

Solving this system of equations gives

d = −aα1 = −bα2 = −cα3.

By Corollary 3.4, we may write α1 = −d/a, α2 = −d/b, α3 = −d/c. Substituting these equalities

into the expression v4 =
∑3

i=1 αivi gives (29). Note that at least one αi is nonzero, so d is nonzero
as well, that is, we have not made a division by zero. �

Since det(v1, v2, v3) 6= 0, we have || 1av1 + 1
bv2 + 1

cv3||2 6= 0. Since ||v4||2 = 1, Lemma 3.5 implies

v4 = −
1
av1 + 1

bv2 + 1
cv3

|| 1av1 + 1
bv2 + 1

cv3||2
. (30)

A priori, we have only determined v4 up to multiplication by ±1. However, Proposition 3.1(c) and
Corollary 3.4 imply that d = (−1/3)〈z4, v4〉 > 0. So, taking the inner product of z4 with both sides
of (30) shows that (30) has the correct sign.
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Applying (23) to (30) gives

v4 = −
sin θ23
θ23

v1 + sin θ13
θ13

v2 + sin θ12
θ12

v3∣∣∣∣∣∣ sin θ23θ23
v1 + sin θ13

θ13
v2 + sin θ12

θ12
v3

∣∣∣∣∣∣
2

. (31)

Define, as we did in Section 2,

λ =

∣∣∣∣∣∣∣∣sin θ23

θ23
v1 +

sin θ13

θ13
v2 +

sin θ12

θ12
v3

∣∣∣∣∣∣∣∣2
2

(32)

=
sin2 θ23

θ2
23

+
sin2 θ13

θ2
13

+
sin2 θ12

θ2
12

+ 2
sin θ23 sin θ13

θ23θ13
cos θ12

+ 2
sin θ23 sin θ12

θ23θ12
cos θ13 + 2

sin θ12 sin θ13

θ12θ13
cos θ23.

(33)

Proposition 3.6. (a) All four vertices of P are not contained in any closed half sphere.

(b) The function F (P ) is well-defined as a function of the vertices {vi}4i=1.

Proof. (a) By Proposition 3.1(e) we have 0 < θij < π. (31) says that v4 is in the complement of all
closed half spheres containing {v1, v2, v3}.

(b) From Proposition 3.1(e), the edges Ti ∩ Tj of P are geodesics of length less than π, so the
vertices uniquely determine the edges. Finally, the edges determine P itself. �

Proposition 3.7 (Restrictions on products of opposite edges).

sin θ12 sin θ34

θ12θ34
=

sin θ13 sin θ24

θ13θ24
=

sin θ14 sin θ23

θ14θ23
. (34)

Proof. ¿From Proposition 3.1(c) we have 〈z3, v1〉 = 〈z2, v1〉. For each side of the equality 〈z3, v1〉 =
〈z2, v1〉, apply (23) for 〈zi, v1〉 and then substitute in (31) to get

−det(v1, v3, v2)

2
√
λ

sin θ12

θ12

θ24

sin θ24
= −det(v1, v3, v2)

2
√
λ

sin θ13

θ13

θ34

sin θ34
.

Canceling terms gives the first equality of (34). The second follows similarly: Proposition 3.1(c)
says 〈z3, v2〉 = 〈z1, v2〉, and so on. �

Lemma 3.8 (Restrictions on a single triangle). Let λ be defined as in (33) and let γ be defined as
in (16), i.e.,

γ =
sin θ23

θ23
cos θ12 +

sin θ13

θ13
+

sin θ12

θ12
cos θ23. (35)

Then the following holds

cos

(√
λ− γ2

θ23θ12

sin θ23 sin θ12

)
= − γ√

λ
. (36)

cos

(√
θ2

12 + θ2
23 + 2θ12θ23 cos Θ123

)
= − γ√

λ
. (37)

Proof. Arguing as in Proposition 3.7, we start with Proposition 3.1(c) and the equality 〈z4, v1〉 =
〈z3, v1〉. For each side of this equality, apply (23) for 〈zi, v1〉 and substitute in (31) to get

θ23θ12

sin θ23 sin θ12
=

θ24

sin θ24

1√
λ
. (38)

Substituting θ24 = arccos(〈v2, v4〉) into (38) and rearranging gives

cos

(√
λ
√

1− 〈v2, v4〉2
θ23θ12

sin θ23 sin θ12

)
= 〈v2, v4〉.
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¿From (31) and the definitions of λ and γ ((33) and (35)), we have 〈v2, v4〉 = −γ/
√
λ, so

cos

(
√
λ

√
1− γ2

λ

θ23θ12

sin θ23 sin θ12

)
= − γ√

λ
.

yielding (36). To derive (37), observe that λ− γ2 allows some cancelation as follows.

λ− γ2 =
sin2 θ23

θ2
23

(1− cos2 θ12) +
sin2 θ12

θ2
12

(1− cos2 θ23) + 2
sin θ23 sin θ12

θ23θ12
(cos θ31 − cos θ23 cos θ12)

=
sin2 θ23

θ2
23

(sin2 θ12) +
sin2 θ12

θ2
12

(sin2 θ23) + 2
sin θ23 sin θ12

θ23θ12
(cos θ31 − cos θ23 cos θ12).

Thus,

(λ− γ2)
θ2

23θ
2
12

sin2 θ23 sin2 θ12
= θ2

12 + θ2
23 + 2θ12θ23

cos θ31 − cos θ23 cos θ12

sin θ12 sin θ23

= θ2
12 + θ2

23 + 2θ12θ23 cos Θ123 , by the spherical law of cosines.

Substituting this equation into (36) gives (37). �

Since − γ√
λ

= 〈v4, v2〉 = cos θ24, (37) says that

θ2
12 + θ2

23 + 2θ12θ23 cos Θ123 = θ2
24. (39)

Substituting (39) back into (27) and (20) gives a simplified form of F (P ).

Lemma 3.9.

F (P ) =
∑
i<j

θ2
ij =

∑
i<j

(arccos(〈vi, vj〉))2 (40)

Proof. Applying (28) to the definition F (P ) =
∑4

i=1 ||zi||
2
2 gives

F (P ) =
1

2

∑
i<j

θ2
ij −

1

2

∑
i,j,`

cos(Θij`)θijθj`. (41)

Here the first sum in (41) runs over all (i, j) satisfying 1 6 i < j 6 4, and the second sum runs
over all equivalence classes of 3-tuples (i, j, `) under the equivalence (i, j, `) ∼ (`, j, i), where i, j, `
are distinct elements of {1, 2, 3, 4}. From (39) we have, for r /∈ {i, j, `},

θ2
ij + θ2

j` + 2θijθj` cos Θij` = θ2
jr. (42)

Substituting (42) into (41) gives

F (P ) =
1

2

∑
i<j

θ2
ij −

1

4

∑
i,j,`

(
θ2
jr − θ2

ij − θ2
j`

)
.

In the right summation, for a fixed (i′, j′) with i′ 6= j′, the term θ2
i′j′ appears four times with a

minus sign and two times with a plus sign. Therefore,

F (P ) =
1

2

∑
i<j

θ2
ij −

1

4

∑
i,j,`

(
θ2
jr − θ2

ij − θ2
j`

)
=

1

2

∑
i<j

θ2
ij −

1

4
(
∑
i<j

−2θ2
ij) =

∑
i<j

θ2
ij ,

proving (40). �

In (40) replace θ2
jr with the left side of (42) for (j, r) ∈ {(1, 4), (2, 4), (3, 4)} to get

F (P ) = 3
(
θ2

12 + θ2
23 + θ2

13

)
+ 2 cos(Θ213)θ12θ13 + 2 cos(Θ123)θ12θ23 + 2 cos(Θ231)θ23θ13. (43)
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Definition 3.10. By the spherical law of cosines, Θij` is a function of {θij , θj`, θi`}. Let

F0(θ12, θ23, θ13) = 3
(
θ2

12 + θ2
23 + θ2

13

)
+ 2 cos(Θ213)θ12θ13 + 2 cos(Θ123)θ12θ23 + 2 cos(Θ231)θ23θ13.

By (43), F (P ) = F0 can be computed by the data from only one triangle of P . That is,

F0(θ12, θ23, θ13) = F0(θ12, θ24, θ14) = F0(θ34, θ24, θ23) = F0(θ34, θ14, θ13).

Since the spherical propeller partition, i.e., the partition of S2 corresponding to the intersection
of the propeller partition of R3 with S2, satisfies F = (9/4)π2, we may bound (43) in terms
of M = max{θ12, θ13, θ23}. In particular, we get F (P ) 6 14M2, which is less than (9/4)π2 if
M < π 3

2
√

14
. (In our bound on F (P ), we use that one Θijk must be larger than π/3 by the

pigeonhole principle applied to Θ123 + Θ231 + Θ312 − π = AreaS2(T4) > 0, so one cosine term
satisfies cos Θijk 6 1/2.) So, this bound on F gives

Corollary 3.11. Any triangle Ti of P must have an edge of length greater than π 3
2
√

14
> 5

4 .

Iteratively applying (34) gives the following improvement to Proposition 3.1(e). This improve-
ment will be important in our numerical calculations in Section 4 and in the proof of Theorem 1.1,
since we eventually require a bound on the derivative of θij/ sin θij .

Lemma 3.12 (Restrictions on edge length). For every distinct i, j ∈ {1, 2, 3, 4},

θij < π − 1

2
. (44)

Proof. Suppose θ12 > π − 1/2. We are eventually going to derive a contradiction, which will
allow us to conclude that θ12 < π − 1/2. We will essentially only need (34), the monotonicity of
x 7→ (sinx)/x for x ∈ (0, π), the fact that the perimeter θij + θj` + θ`i of a spherical triangle is
bounded by 2π, and that (sinx)/x 6 1 on [0, π]. Relabeling the edges if necessary, we may assume
that θ13 = max{θ13, θ24}. Using θ12 > π − 1/2, (34) gives

sin(π − 1/2)

π − 1/2
>

sin θ12

θ12
>

sin θ12 sin θ34

θ12θ34
=

sin θ13 sin θ24

θ13θ24
>

(
sin θ13

θ13

)2

. (45)

Therefore, θ13 > X where X ∈ (0, π) satisfies(
sinX

X

)2

=
sin(π − 1/2)

π − 1/2
. (46)

So, θ13 > X > 2.065. Now, since θ12 + θ13 + θ23 6 2π the bounds on θ12 and θ13 give

θ23 6 2π − (π − 1/2 +X) =: Y < 1.577.

But then (34) and the bounds on θ12 and θ23 yield

sin θ14

θ14
=

sin θ12 sin θ34

θ12θ34

θ23

sin θ23
6

sin(π − 1/2)

π − 1/2

Y

sinY
.

So, θ14 > Z where Z ∈ (0, π) is defined by

sinZ

Z
=

sin(π − 1/2)

π − 1/2

Y

sinY
.

Then θ14 > Z > 2.388. But since θ14 + θ24 + θ12 6 2π the bounds on θ14 and θ12 give

θ24 6 2π − (π − 1/2 + Z) =: W < 1.254

We now iterate the above argument. Using (45),

sin θ13

θ13
=

sin θ12 sin θ34

θ12θ34

θ24

sin θ24
6

sin(π − 1/2)

π − 1/2

W

sinW
. (47)
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So, θ13 > X̃ with (sin X̃)/X̃ = (sin(π − 1/2)/(π − 1/2))(W/ sinW ). We now repeat the argument

above, starting at (46) and using tildes to designate updated variables. Thus, θ13 > X̃ > 2.499,

θ23 6 Ỹ < 1.14, θ14 > Z̃ > 2.52, θ24 6 W̃ < 1.122. Using W̃ in place of W in (47), we find that
θ13 > 2.52.

In summary, iterating the above procedure improves our bounds on the θij . We find that
θ13, θ14 > 2.52. We also find that θ23, θ24 < 1.14. Since θ13 + θ14 + θ34 6 2π, θ34 6 2π − (2(2.52)).
But then θ23, θ24, θ34 < 5/4 < π 3

2
√

14
, violating Corollary 3.11 and giving our desired contradiction.

We therefore conclude that θij < π − 1/2. �

For a partition P = {Ti}4i=1 as above, the following map G : (S2)4 → R is also a function of P
by Proposition 3.6(b)

G(v1, v2, v3, v4) =
∑

16i<j64

θ2
ij . (48)

Proposition 3.13. Suppose that the conclusion of Proposition 3.1(e) holds. Then Proposition
3.1(c) holds if and only if P is a critical point of G.

Proof. For a manifold M with v ∈ M , TvM denotes the tangent space of M at v. Since G =∑
i<j θ

2
ij =

∑
i<j(arccos〈vi, vj〉)2, we take derivatives of G with respect to vi. For v2, v3, v4 ∈ S2

fixed and x ∈ R3 variable,

∇S2G(·, v2, v3, v4) =

(
∇R3G

(
x

||x||2
, v2, v3, v4

))∣∣∣∣
S2

Recall that Tv1R3 is isomorphic to R3. We denote this isomorphism by (d/dy)↔ y.
Let d

dy be a vector in the tangent space Tv1R3. Identifying d
dy with y ∈ R3 we compute

d

dy
G

(
x

||x||2
, v2, v3, v4

)
=
∑
j 6=1

−2 arccos(〈x, vj〉/ ||x||2)√
1− (〈x, vj〉/ ||x||2)2

〈
d

dy
(x/ ||x||2), vj

〉

=
∑
j 6=1

−2 arccos(〈x, vj〉/ ||x||2)√
1− (〈x, vj〉/ ||x||2)2

(
||x||2

d
dy 〈x, vj〉 −

1
2〈x, vj〉 ||x||

−1
2

d
dy 〈x, x〉

||x||22

)

=
∑
j 6=1

−2 arccos(〈x, vj〉/ ||x||2)√
1− (〈x, vj〉/ ||x||2)2

〈(
||x||2 y − x ||x||

−1
2 〈y, x〉

||x||22

)
, vj

〉
.

Letting d
dy ∈ Tv1S

2 and x = v1 ∈ S2 gives 〈y, x〉 = 0, so that

d

dy
G

(
x

||x||2
, v2, v3, v4

)
=
∑
j 6=1

−2 arccos(〈v1, vj〉)√
1− (〈v1, vj〉)2

〈y, vj〉 =
∑
j 6=1

−2θ1j

sin θ1j
〈y, vj〉 .

So, if we take d
dy = v1 × v2 ∈ Tv1S2 and then use (23), we get

d

dy
G =

−2θ13

sin θ13
det(v1, v2, v3)− 2θ14

sin θ14
det(v1, v2, v4) = 2(−〈z4, v2〉+ 〈z3, v2〉).

In general, if we take the derivative at vi in the direction vi × vj and set this derivative to zero,
we get 〈zr, vj〉 = 〈z`, vj〉 where the set {i, j, `, r} is equal to the set {1, 2, 3, 4}. Since the above
argument can be reversed, the proposition is proven. �

Setting d
dy = v2 − 〈v2, v1〉v1 and d

dy = v3 − 〈v3, v1〉v3 in the above argument gives

− θ12 = θ13 cos Θ213 + θ14 cos Θ214. (49)
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Observe that

d

dy
G

(
x

||x||2
, v2, v3, v4

)
=
∑
j 6=1

−2θ1j

sin θ1j
〈y, vj〉 =

∑
j 6=1

−2θ1j

sin θ1j
〈(v2 − 〈v1, v2〉v1), vj〉

= − 2θ12

sin θ12
(1− (〈v2, v1〉)2)− 2θ13

sin θ13
(〈v2, v3〉 − (〈v2, v1〉)(〈v1, v3〉))

− 2θ14

sin θ14
(〈v2, v4〉 − (〈v2, v1〉)(〈v1, v4〉))

= − 2θ12

sin θ12
(1− (〈v2, v1〉)2)− 2θ13

sin θ13
〈(v1 × v2), (v1 × v3)〉 − 2θ14

sin θ14
〈(v1 × v2), (v1 × v4)〉 .

Thus, dividing by sin θ12, setting d
dyG = 0, and simplifying as in Corollary 3.3 gives (49).

We now give a geometric interpretation of (39) and (49) that should clarify their meaning. Define
exp−1

1 : {2, 3, 4} → R2 by

exp−1
1 (j) = θ1j

(vj − 〈vj , v1〉v1)

||vj − 〈vj , v1〉v1||2
. (50)

Then exp−1
1 (j) is perpendicular to v1 and parallel to vj − Projv1vj , with length θ1j .

Lemma 3.14. Suppose that the conclusion of Proposition 3.1(e) holds. If {vi}4i=1 is a critical point
of G, then

exp−1
1 (2) + exp−1

1 (3) + exp−1
1 (4) = 0. (51)

Proof. Let Πij ⊆ R3 be the plane containing {0, vi, vj}. For j ∈ {2, 3, 4}, exp−1
1 (j) ∈ Π1j is

perpendicular to v1 and in Π1j , so 〈exp−1
1 (2), exp−1

1 (3)〉 = θ12θ13 cos Θ213. We can therefore rewrite
(39) as ∣∣∣∣exp−1

1 (2) + exp−1
1 (3)

∣∣∣∣2
2

=
∣∣∣∣exp−1

1 (4)
∣∣∣∣2

2
. (52)

Using the definition of exp−1
1 (j), we similarly rewrite (49) (with its indices permuted) as

− exp−1
1 (4) = Projexp−1

1 (4)(exp−1
1 (2)) + Projexp−1

1 (4)(exp−1
1 (3)). (53)

Since exp−1
1 (j) is perpendicular to v1 for j ∈ {2, 3, 4}, {exp−1

1 (j)}j∈{2,3,4} lies in a plane containing
the origin. Combining (52) and (53) therefore gives (51). �

In particular, orthogonally projecting (51) orthogonal to exp−1
1 (2) gives

θ13 sin Θ213 = θ14 sin Θ214. (54)

The similarity of (39),(49) and (54) is no coincidence. For example, note that (49) and (54)
express

∑
j∈{2,3,4} exp−1

1 (j) = 0, tangential and perpendicular to exp−1
1 (2), respectively. So, com-

bining Proposition 3.13, (49), (54) and Lemma 3.14, we deduce the equivalence

Corollary 3.15. Suppose that the conclusion of Proposition 3.1(e) holds. Then{
Prop. 3.1(c)

holds

}
⇔
{

P is a
critical point of G

}
⇔
{

(51) holds at each vi. That is,
for each i,

∑
j : j 6=i exp−1

i (j) = 0

}
Lemma 3.16. θij > 1/10 and sin Θij` > 1/10.

Proof. After recording a few identities, we consider a few cases in proving θij > 1/10. In all cases,
we argue by contradiction and assume 0 < θ12 6 1/10. Also, by relabeling if necessary, we may
assume that max{θ13, θ23, θ14, θ24} = max{θ13, θ23}.

cos Θ213 =
cos θ23 − cos θ12 cos θ13

sin θ12 sin θ13
. (55)
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cos Θ132 =
cos θ12 − cos θ13 cos θ23

sin θ13 sin θ23
. (56)

cos θ34 = cos θ13 cos θ14 + sin θ13 sin θ14 cos Θ314

= cos θ13 cos θ14 + sin θ13 sin θ14 cos(2π −Θ213 −Θ214).
(57)

| arccos(x+ y)− arccos(x)| 6 arccos(1− y), x, y, x+ y ∈ [−1, 1]. (58)

(Case 1) π/2 6 max{θ13, θ23} 6 π/2 + 1/10. Without loss of generality, label the edges so that
θ13 > θ23, so π/2 6 θ13 6 π/2 + 1/10. Then θ14 > θ24, from Proposition 3.1(b). The Proposition
shows that Projspan{v1,v2}(z4−z3) = 0. Suppose θ14 < θ24. Let e be the midpoint of the edge T4∩T3

and let n ∈ span{v1, v2} be perpendicular to e such that 〈n, v2〉 > 0. Since θ13 > θ23, 〈z4, n〉 > 0.
To see this, let Π: S2 → R2 denote projection onto the unique plane intersecting the origin and
perpendicular to n. Without loss of generality, the vertices are oriented so that det(v1, v2, v3) > 0.
Let m be the point of intersection of this plane with (∂T4) r (∂T3). The spherical triangle T ′4
with vertices {v1, v2,m} then has two equal length edges {v1,m} and {v2,m}, and T ′4 ⊆ T4. Also,
θ13 > θ23 implies that T4 ∩ {x ∈ S2 : 〈x, n〉 6 0} = T ′4 ∩ {x ∈ S2 : 〈x, n〉 6 0}. Since T4 ⊇ T ′4 and T ′4
is isosceles,

Π
(
T4 ∩ {x ∈ S2 : 〈x, n〉 > 0}

)
⊇ Π

(
T ′4 ∩ {x ∈ S2 : 〈x, n〉 > 0}

)
= Π

(
T4 ∩ {x ∈ S2 : 〈x, n〉 6 0}

)
.

So (25) shows 〈z4, n〉 > 0. Similarly, θ14 < θ24, implies 〈z3, n〉 < 0, a contradiction. Now

cos Θ213 =
cos θ23 − cos θ13 cos θ12

sin θ13 sin θ12
>

cos θ13(1− cos θ12)

sin θ13 sin θ12
=

tan(θ12/2)

tan θ13
>

tan(1/20)

tan(π/2 + 1/10)
.

So, Θ213 6 arccos( tan(1/20)
tan(π/2+1/10)) < π/2 + .01. By (39), (θ13 − θ12)2 6 θ2

14 6 (θ12 + θ13)2, so

π/2 − 1/10 6 θ14 6 θ13 + θ12 6 π/2 + 1/10 + 1/10. So we similarly conclude that Θ214 6

arccos( tan(1/20)
tan(π/2+1/5)) < π/2 + .02. By (57),

cos θ34 = cos(θ13 + θ14) + sin θ13 sin θ14(1 + cos(2π −Θ213 −Θ214)). (59)

Since Θ314 < π by Proposition 3.1(e),

|1 + cos Θ314| = |1 + cos(2π −Θ213 −Θ214)| 6 |1 + cos(2π − π − .03)| < .0005.

Then (58) applied to (59) gives a dichotomy: (i) if θ13 + θ14 6 π, then |θ34 − (θ13 + θ14)| < .04. Or
(ii) if θ13 + θ14 > π, then |θ34 − (2π − θ13 + θ14)| < .04. In case (i), θ34 > π/2 +π/2− 1/10− .04 >
π − 1/2. In case (ii), θ34 > 2π − (π/2 + 1/10 + π/2 + 1/5) − .04 > π − 1/2. So, in either case,
Lemma 3.12 is violated. Therefore Case 1 cannot hold.
(Case 2) π/2 + 1/10 6 max{θ13, θ23} 6 2.9. Without loss of generality, label the edges so that
θ13 > θ23, so π/2 + 1/10 6 θ13 6 2.9. By the triangle inequality on the sphere, θ23 > θ13 − θ12 >
θ13 − 1/10 > π/2, so

θ13 cos Θ132 = θ13

(
cos θ12 − cos θ13 cos θ23

sin θ13 sin θ23

)
> θ13

(
cos(1/10)− cos θ13 cos θ13

sin θ13 sin(θ13 − 1/10)

)
>
π

2
.

Since θ23, θ13 > π/2, (39) gives

θ34 =
√
θ2

13 + θ2
23 + 2θ13θ23 cos Θ132 >

√
2(π/2)2 + 2(π/2)(π/2) = π,

so (44) is violated. Therefore Case 2 cannot occur.
(Case 3) The case max{θ13, θ23} > 2.9 cannot occur, by (44). Also, max{θ13, θ23, θ14, θ24} < π/2
implies that T4 and T3 are contained in separate but adjacent quarter spheres, so T4∪T3 is contained
in a half sphere. To see this, consider the edge T4 ∩ T3. Let Π12 be the plane such that Π12 ∩ S2 ⊇
T4 ∩ T3. Temporarily suppose θ13 = θ23 = π/2, and let R : R3 → R3 be the origin fixing rotation
that maps the midpoint of T4 ∩T3 to v3. Then T4 is contained in a quarter sphere whose boundary
is contained in Π12 ∩ S2 and (R(Π12)) ∩ S2. If θ13, θ23 6 π/2, then T4 remains in this quarter
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sphere, since otherwise v3 /∈ {x ∈ S2 : dS2(x, v1) 6 π/2, dS2(x, v2) 6 π/2}. So, Proposition 3.6(a) is
violated. All cases therefore produce a contradiction, concluding the proof that θ12 > 1/10.

We now prove that sin Θijk > 1/10. We argue by contradiction and assume that sin Θ132 < 1/10.
The procedure is similar to the calculations above. The theme is: if some Θijk is very small or very
large, this creates additive relations among the edges, up to small errors. Before we begin, we list
a few consequences of the spherical law of cosines, for i, j, k distinct elements of {1, 2, 3, 4}.

cos θij = cos(θik − θkj) + sin θik sin θkj(cos Θikj − 1). (60)

cos θij = cos(θik + θkj) + sin θik sin θkj(cos Θikj + 1). (61)

Now, assume Θ132 < π/2. Since Θ132 + Θ234 + Θ134 = 2π and −Θ134 > −π from Proposition
3.1(e), Θ132 +Θ234 > π. So Θ234 > π/2 and sin Θ234 6 sin(π−Θ132) = sin(Θ132) < 1/10. So, by re-
labeling edges if necessary, we may assume that Θ132 > π/2. Since Θ132 > π/2, cos Θ132 6 −.9949.
Without loss of generality, label the edges so that θ23 = max{θ13, θ23} and θ13 = min{θ13, θ23}.
(Case 1’) Assume max{θ13, θ23} < π/3. By (39), θ34 6 θ13 + θ23 6 2π/3. But then Proposition
3.6(a) is violated. (Let v ∈ T1∩T2 satisfy dS2(v, v4) = min{θ34, π/2}, and note that {vi}4i=1 ⊆ {x ∈
S2 : d(x, v) 6 π/2}.) So Case 1’ cannot occur.
(Case 2’) Assume max{θ13, θ23} > π/3 and 1/10 < min{θ13, θ23} 6 1/2. Then θ13 + θ23 < π
by Lemma 3.12, so (57) and (58) give |θ12 − (θ13 + θ23)| < .11. By the spherical law of sines
and Lemma 3.12, sin Θ123 = sin Θ132 sin θ13/ sin θ12 6 sin Θ132 sin(1/2)/ sin(1/2) < 1/10. Since
θ13 6 θ23 and θ13 6 1/2, Lemma 3.12 gives cos θ13 > |cos θ23| > cos θ23 cos θ12. So, the formula
cos Θ123 = (cos θ13 − cos θ23 cos θ12)/(sin θ12 sin θ23) shows cos Θ123 > 0, i.e. cos Θ123 > .9949.

Since θ23 < π − 1/2 from Lemma 3.12, θ13 + θ23 < π. Combining this with cos Θ132 < −.9949,
(61) and (58), we see that θ12 > θ13+θ23−.11. Since cos Θ123 > .9949, (39) and θ12 > .1 imply θ24 >√

(π/3)2 + (.1)2 + 2(.1)(π/3)(.9949) > π/3. Now, since cos Θ123 > .9949, Θ123 + Θ124 + Θ324 = 2π,
and −Θ123 > −π from Proposition 3.1(e), Θ123 + Θ324 > π, so cos Θ324 6 cos(π −Θ123) < −.9949.
Since θ23, θ24 > π/3, by relabeling the edges if necessary we may assume that cos Θ123 < −.9949,
max{θ13, θ23} > π/3 and 1/2 < π/3 < min{θ13, θ23}. Thus, we enter into the following case.
(Case 3’) Assume max{θ13, θ23} > π/3 and 1/2 < min{θ13, θ23}. Recall that we may label the
edges so that θ23 = max{θ13, θ23} and θ13 = min{θ13, θ23}. We claim that θ23 > 1.3. If not, then

(39) says θ2
34 = θ2

23 + θ2
13 + 2θ23θ13 cos Θ132, so θ34 6

√
2(1.3)2 − 2(.994)(π/3)(1/2) < 1.53 < π/2

and {vi}4i=1 ⊆ {x ∈ S2 : dS2(x, v3) 6 π/2}. Thus, Proposition 3.6(a) is violated, and our claim is
proven.

As in Case 1 in the proof that θij > 1/10, (61) gives a dichotomy

(i) |θ12 − (θ13 + θ23)| < .11, or (ii) |θ12 + θ13 + θ23 − 2π| < .11

In case (i), θ12 > θ23 + θ13 − .11 > 1/2, and in case (ii), Lemma 3.12 says θij < π − 1/2,
so θ12 > .89 > 1/2. So in either case, 1/2 6 θ12 6 π − 1/2, using Lemma 3.12 again. By
the spherical law of sines, sin Θ123 6 sin Θ132/ sin θ12 6 (1/10)(1/ sin(1/2)) < 21/100. Similarly,
sin Θ312 < 21/100.

Assume (i) holds. If Θ123 < π/2, then cos Θ123 > .977. By (i), θ12 > 1.3 + 1/2− .11 = 1.69. By
(39), θ2

24 = θ2
12 + θ2

23 + 2θ12θ23 cos Θ123, so

θ24 >
√

(1.69)2 + (π/3)2 + 2(1.69)(π/3)(.977) > 2.72 > π − 1

2
.

contradicting Lemma 3.12. If Θ123 > π/2 then cos Θ123 < −.977. Then (61) gives a dichotomy:
either (i)′ |θ13 − (θ12 + θ23)| < .26 or (ii)′ |θ13 + θ12 + θ23 − 2π| < .26. If (i)′ holds, then θ13 >
θ12+θ23−.26, but (i) says θ12 > θ13+θ23−.11. So θ13 > θ13+2θ23−.37, i.e. θ23 < .185, contradicting
that θ23 > π/3. So (ii)′ must hold. But then (i) implies 2θ12 > θ12 + θ13 + θ23 − .11 > 2π − .37, so
θ12 > π − .185, contradicting Lemma 3.12. Therefore (i) does not hold.
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Assume (ii) holds. Suppose Θ123 < π/2 so cos Θ123 > .977. Then (60) and (58) show that
|θ13 − |θ12 − θ23|| < .26. If θ12 > θ23, then |θ12 − (θ13 + θ23)| < .26. So by (ii) 2θ12 > θ12 + θ13 +
θ23 − .26 > 2π − .37, contradicting Lemma 3.12. If θ23 > θ12, then the same argument shows
2θ23 > 2π − .37, contradicting Lemma 3.12. We may therefore assume that cos Θ123 < −.977. If
cos Θ312 > .977, we get the same contradiction, so we may assume cos Θ312 < −.977. In summary,
cos Θ123, cos Θ312, cos Θ132 < −.977.

For i, j distinct, i, j ∈ {1, 2, 3, 4} let Eij = Ti ∩ Tj . Let i′, j′ so that θi′j′ = max{θ13, θ23, θ12}.
Let Πi′j′ be the plane containing Ei′j′ and the origin, and let n be the unit normal to Πi′j′ such
that 〈n, z4〉 < 0. We claim that the edges Ei′4, Ej′4 satisfy

Ei′4, Ej′4 ⊆ {x ∈ S2 : 0 6 〈x, n〉 6 .65}. (62)

Also, the union of Ei′4, Ej′4, Ei′j′ forms a noncontractible loop in this topological annulus.
To prove Ei′4 ⊆ {x ∈ S2 : 〈x, n〉 6 .65}, it suffices to show

Θj′i′4 > π − sin−1(.65), or θi′4 < sin−1(.65). (63)

To see this consequence, let x ∈ S2 be contained in the great circle containing Ei′4 and let
{i′, j′, k} = {1, 2, 3}. Since 〈n, vi′〉 = 0 and 〈n, zk〉 > 0, 〈x, n〉 is maximized when dS2(x, vi′) = π/2
and 〈x, n〉 > 0. For such an x, 〈x, n〉 = sin Θj′i′4. So, in the case that Θj′i′4 > π − sin−1(.65),
Ei′4 ⊆ {x ∈ S2 : 〈x, n〉 6 .65}. Let now x ∈ {y ∈ S2 : dS2(y, vi′) 6 θi′4} ⊇ Ei′4. For such an x, 〈x, n〉
is maximized for x in the plane containing {vi′ , n, 0} with dS2(x, vi′) = θi′4. So 〈x, n〉 = sin θi′4.
So, in the case that θi′4 < sin−1(.65), Ei′4 ⊆ {x ∈ S2 : 〈x, n〉 6 .65}, as desired. The contain-
ment Ej′4 ⊆ {x ∈ S2 : 〈x, n〉 6 .65} follows similarly if one shows: Θi′j′4 > π − sin−1(.65) or

θj′4 < sin−1(.65). Specifically, in the above paragraph we switch all indices of the form i′ to j′ and
all j′ to i′, and the containment follows.

We now discuss the proof of (63). Let {i′, j′, k} = {1, 2, 3}. Since Θj′i′k,Θi′j′k < π by Proposition
3.1(e) and Ei′j′ ⊆ {x ∈ S2 : 〈x, n〉 = 0}, we conclude that Ei′k, Ej′k ⊆ {x ∈ S2 : 〈x, n〉 6 0}. By

Lemma 3.14,
∑

j : j 6=i′ exp−1
i′ (j) = 0 and

∑
j : j 6=j′ exp−1

j′ (j) = 0, so we conclude Ei′4, Ej′4 ⊆ {x ∈
S2 : 0 6 〈x, n〉}. By the definition of θi′j′ and Lemma 3.14, Θj′i′4 > Θki′4. In particular, since
Θj′i′4 + Θki′4 > π, we conclude that Θj′i′4 > π/2. Similarly, Θi′j′4 > π/2. If Ei′4 ∪Ei′j′ ∪Ej′4 were
contractible in {x ∈ S2 : 0 6 〈x, n〉 6 .65}, then by (63), the location of v4 is such that T3 avoids
the region {x ∈ S2 : 〈x, n〉 > .65 or 〈x, n〉 6 0}. But then either Θi′j′4 or Θj′i′4 is less than π/2,
a contradiction. So, the noncontractibility property of Ei′4 ∪ Ei′j′ ∪ Ej′4 follows from (63), which
remains to be proven.

Consider θi′k and Ei′j′ as fixed with Θj′i′k, Ei′4 variable. From Lemma 3.14, recall that exp−1
i′ (4)

and exp−1
i′ (j′) have angle Θj′i′4. Also exp−1

i′ (k) and exp−1
i′ (j′) have angle Θj′i′k, and exp−1

i′ (·) is
confined to a plane. By Lemma 3.14, scaling θi′j′ and θi′k by the same constant (greater than one)
leaves Θj′i′4 unchanged and increases θi′4. So in proving (63), we may assume that θi′j′ = π− 1/2,
by Lemma 3.12.

Suppose θi′k < .815(π − 1/2). In this case, we will show that sin Θj′i′4 < .65, recalling that
Θj′i′4 > π/2. Using planar geometry and Lemma 3.14, one can show: decreasing Θj′i′k decreases
Θj′i′4. So, for the purpose of showing sin Θj′i′4 < .65, we may assume that cos Θj′i′k = −.977.

Now, suppose θi′k > .815(π − 1/2). In this case we show that sin θi′4 < .65, recalling that
θi′4 < π/2, since (42) says

θ2
i′4 = (θi′j′ − θi′k)2 + 2θi′j′θi′k(1 + cos Θj′i′k) 6 (.185(π − 1/2))2 + 2(π − 1/2)2(.815)(.033) < .62.

Consider θi′k, Ei′j′ as fixed with Θj′i′k, Ei′4 variable. By Lemma 3.14,

θ2
i′4 =

∣∣∣∣exp−1
i′ (4)

∣∣∣∣2
2

=
∣∣∣∣exp−1

i′ (j′) + exp−1
i′ (k)

∣∣∣∣2
2

= θ2
i′j′ + θ2

i′k + 2θi′j′θi′k cos Θj′i′k.
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Recall cos Θj′i′k < −.977, so decreasing Θj′i′k increases θi′4. So, for the purpose of maximizing
sin θi′4, we may assume that cos Θj′i′k = −.977. With these reductions (i.e. that cos Θj′i′k = −.977
and θi′j′ = π − 1/2) for these two cases, one can then verify (63) directly as a one-dimensional
inequality, using Lemma 3.14 and treating θik as a variable with all other quantities a function of
θik. With identical reductions, Θi′j′4 > π − sin−1(.65) θj′4 < sin−1(.65). Therefore, (62) holds.

Given (62), note that the circumference of the geodesic ball {x ∈ S2 : 〈x, n〉 = .65} is given

by 2π
√

1− (.65)2 > 4.77. By the noncontractible property, θi′j′ + θi′4 + θj′4 > 4.77. By (39),

θi′4 >
√

(θi′j′ − θi′k)2 + 2θi′j′θi′k(1 + cos Θj′i′k) > θi′j′ − θi′k and similarly θj′4 > (θi′j′ − θj′k).
Substituting these inequalities into θi′j′ + θi′4 + θj′4 > 4.77 gives

θi′j′ + (θi′j′ − θi′k) + (θi′j′ − θj′k) > 4.77.

However, by (ii), θi′j′+θi′k+θj′k > 2π−.11. So adding the inequalities gives 4θi′j′ > 4.77+2π−.11,
i.e. θi′j′ > 2.73 > π − 1/2, violating Lemma 3.12. So, all cases produce a contradiction, and the
result is proven. �

4. Numerical Computations

We now provide a more comprehensive analysis of the system of equations resulting from Lemma
3.8. We begin by writing this system explicitly. For i ∈ {1, 2, 3} choose j, ` such that {i, j, `} =
{1, 2, 3}. Define

γi = −
√
λ 〈vi, v4〉 =

sin θi`
θi`

cos θij +
sin θj`
θj`

+
sin θij
θij

cos θi`. (64)

Then γ = γ2 from (35). Our system follows by cyclically permuting the θij in (37), i.e.,
√
λ cos

(√
θ2

12 + θ2
13 + 2θ12θ13 cos Θ213

)
+ γ1 = 0,

√
λ cos

(√
θ2

12 + θ2
23 + 2θ12θ23 cos Θ123

)
+ γ2 = 0,

√
λ cos

(√
θ2

13 + θ2
23 + 2θ13θ23 cos Θ132

)
+ γ3 = 0,

(65)

where Θij` and λ are defined in (12) and (32) respectively.
Observe that (65) gives three equations in the three unknowns θ12, θ13, θ23. Define H : [0, π]3 →

R3 so that H(θ12, θ13, θ23) = (H1, H2, H3) is the vector corresponding to the entries of the left side
of (65). We now wish to find (θ12, θ13, θ23) such that H = (0, 0, 0).

We first examine neighborhoods of the two points discussed in Section 3.

Lemma 4.1. The global maximum of F does not occur in the `2 balls of radius 1/100 around the
points {θ12, θ13, θ23} = {θ, θ, θ} ∈ R3 with θ = arccos(−1/3) and θ = 1.53796841207904.

Proof. Let δ = 1/100. We claim that |〈∇R3F0(θ12, θ13, θ23), v〉| 6 20, for (θ12, θ13, θ23) in an `2 ball
in R3 of radius δ ball around the point (arccos(−1/3), arccos(−1/3), arccos(−1/3)) ∈ R3, where
v ∈ S2. Now, F0(arccos(−1/3), arccos(−1/3), arccos(−1/3)) = 6(arccos(−1/3))2 ≈ 21.9031 while
F at the spherical propeller partition evaluates to (9/4)π2 ≈ 22.206. So, given this claim, since
δ |〈∇R3F0〉| < 22.206−21.903 in B3

2({θ}3i=1, δ), no global maximum of F may occur in B3
2({θ}3i=1, δ).

Similarly, we claim that |〈∇R3F0(θ12, θ13, θ23), v〉| 6 15 for (θ12, θ13, θ23) in an `2 ball of radius δ
around {θ}3i=1 ∈ R3 with θ ≈ 1.53796841207904. Since F0({θ}3i=1) ≈ 21.7391, once again, no global
maximum of F occurs in B3

2({θ}3i=1, δ).
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Proof of claim: for θ = arccos(−1/3) or θ = 1.537968, we first show that ||Hessian(F0)||2 < 488

for all points in B3
2({θ}3i=1, δ) ⊆ R3. Let F̃ (x, y, z) = F0(x, y, z). Then

F̃xx = 6 + 4
cos (y) y

sin (y)
− 2

cos (y)xy cos (x)

sin (x) sin (y)
+ 4

(cos (z)− cos (x) cos (y))xy (cos (x))2

(sin (x))3 sin (y)

− 4
(cos (z)− cos (x) cos (y)) y cos (x)

(sin (x))2 sin (y)
+ 2

(cos (z)− cos (x) cos (y))xy

sin (x) sin (y)
− 2

cos (x) zy

sin (z) sin (y)

+ 4
cos (z) z

sin (z)
− 2

cos (z)xz cos (x)

sin (x) sin (z)
+ 4

(cos (y)− cos (x) cos (z))xz (cos (x))2

(sin (x))3 sin (z)

− 4
(cos (y)− cos (x) cos (z)) z cos (x)

(sin (x))2 sin (z)
+ 2

(cos (y)− cos (x) cos (z))xz

sin (x) sin (z)
.

F̃xy = −2xy − 2
(cos (y))2 xy

(sin (y))2 + 2
cos (y)x

sin (y)
− 2

(cos (x))2 xy

(sin (x))2

+ 2
(cos (z)− cos (x) cos (y))xy cos (x) cos (y)

(sin (x))2 (sin (y))2 − 2
(cos (z)− cos (x) cos (y))x cos (x)

(sin (x))2 sin (y)

+ 2
cos (x) y

sin (x)
− 2

(cos (z)− cos (x) cos (y)) y cos (y)

sin (x) (sin (y))2 + 2
cos (z)− cos (x) cos (y)

sin (x) sin (y)

+ 2
sin (x) zy cos (y)

sin (z) (sin (y))2 − 2
sin (x) z

sin (z) sin (y)
+ 2

sin (y)xz cos (x)

(sin (x))2 sin (z)
− 2

sin (y) z

sin (x) sin (z)
.

With δ < 1/100, θ = arccos(−1/3), and (x, y, z) ∈ B3
2({θ}3i=1, δ), we have 1/ |sin(x)| < 1.1, and

similarly for y, z. Therefore, in this δ-ball we have |F̃xx| < 228. Here we have bounded the cosine
terms by 1, the x, y, z terms by 2 (since arccos(1/3) + δ < 2), and the inverted sine terms by 1.1.

Using these same bounds, we find that |F̃xy| < 117 in this same δ-ball. For a 3× 3 matrix A = aij ,

let ||A||2 = (
∑3

i,j=1 a
2
ij)

1/2. Since F̃ is symmetric in its arguments, we have the following bound in

B3
2({θ}3i=1, δ)

||Hessian(F̃ )||2 6

∣∣∣∣∣∣
∣∣∣∣∣∣
228 117 117

117 228 117
117 117 228

∣∣∣∣∣∣
∣∣∣∣∣∣
2

< 488,

as desired. And the same estimate of the Hessian applies for θ ≈ 1.5379684120790425.
Apply now the Hessian estimate to ||∇R3f(b)||2 6 ||∇R3f(a)||2 +δ sup~x∈B3

2(a,δ) ||Hessian(f)(~x)||2,

which holds for every sufficiently smooth f : R3 → R if a, b ∈ R3 satisfy ||b− a||2 6 δ. We then
explicitly calculate ||∇R3F0|{arccos(−1/3)}3i=1

||2 < 13.6 and ||∇R3F0|{1.5379684}3i=1
||2 < 9.7. So, in

B3
2({arccos(−1/3)}3i=1, δ) we have ||∇R3F0||2 < 13.6 + 4.88 and in B3

2({1.5379684}3i=1, δ) we have
||∇R3F0||2 < 9.7 + 4.88, proving the claim. �

Lemma 4.2. We may assume that
√
λ > .18.

Proof. Substituting in (31), det(v2, v1, v4) = det(v1, v2, v3) sin θ12
θ12

1√
λ

. Using (44),

|det(v2, v1, v4)| > |det(v1, v2, v3)| sin(1/2)√
λ (π − 1/2)

. (66)

Now, suppose
√
λ < sin(1/2)/(π − 1/2), and

√
λ′ < sin(1/2)/(π − 1/2), with λ′ defined by

λ′ =

∣∣∣∣∣∣∣∣sin θ12

θ12
v4 +

sin θ24

θ24
v1 +

sin θ14

θ14
v2

∣∣∣∣∣∣∣∣2
2
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Applying (66) twice (with indices changed appropriately) shows |det(v2, v1, v4)| > |det(v1, v2, v3)|
and |det(v2, v1, v4)| < |det(v1, v2, v3)|, a contradiction. We may therefore assume that one triangle

of P (which, up to relabeling, is T4) satisfies
√
λ > (sin(1/2)/(π − 1/2)) > .18. �

We now derive some modulus of continuity and derivative estimates for our system (65). Recall
that P = {Ti}4i=1 satisfies Proposition 3.1(e). Since (65) must hold for the data of each individual
triangle Ti, we select in (65) the data from the triangle T4. Then θ12 + θ23 + θ13 6 2π, since the
perimeter of T4 is bounded by 2π. By relabeling the edges of T4 and using the pigeonhole principle,
we may assume θ12 6 2π/3. The following summary of (65) holds for any labeling of the form
{i, j, `} = {1, 2, 3}.

θij + θj` > θi` , triangle inequality on the sphere

θ12 + θ23 + θ13 6 2π

θ12 6 2π/3

θ13, θ23 6 π − 1/2 , (44)

maxi,j∈{1,2,3},i 6=j{θij} > π 3
2
√

14
, Corollary 3.11

θij > 1/10 , Lemma 3.16

sin Θij` > 1/10 , Lemma 3.16√
λ > .18 , Lemma 4.2

(67)

For a map f : (X, ||·||X)→ (Y, ||·||Y ) between two normed linear spaces, a modulus of continuity
for f , denoted by ωf , satisfies ||f(x1)− f(x2)||Y 6 ωf (||x1 − x2||X , x1, x2). We allow ωf to depend
on x1, with x2 in a δ-ball around some given point x1 = (θ12, θ13, θ23).

Lemma 4.3. Suppose δ < 1/100, and consider H1 : ([0, π]3, ||·||∞) → R, H1 = H1(θ12, θ13, θ23).
Suppose also that λ = λ(θ12, θ13, θ23) > η. Then, in an `∞ ball of radius δ centered at (θ12, θ13, θ23),
the following holds

ωH1(δ) 6 G(δ, ~θ, η) = δ

[
7

2
+

15

2
√
η − 15δ

+ 3

(
2(θ12 + δ) + 2(θ13 + δ)

+ (θ12 + δ)(θ13 + δ)

(
2

sin(θ12 + δ)
+

2

sin(θ13 + δ)
+

1

sin(θ12 + δ) sin(θ13 + δ)

))]
.

(68)

Or, applying Lemma 4.2, for δ sufficiently small,

ωH1(δ) 6 δ

[
7

2
+

15

2
√
.0329− 15δ

+ 3

(
2(θ12 + δ) + 2(θ13 + δ)

+ (θ12 + δ)(θ13 + δ)

(
2

sin(θ12 + δ)
+

2

sin(θ13 + δ)
+

1

sin(θ12 + δ) sin(θ13 + δ)

))]
.

(69)

Proof. We want to compute the modulus for the following function from (R3, ||·||∞) to R

H1(θ12, θ13, θ23) =
√
λ cos

(√
θ2

12 + θ2
13 + 2θ12θ13 cos Θ213

)
+ γ1

where λ and γ1 are defined in (33) and (64) respectively. In what follows, we use the product rule,
chain rule, and sum rule for the modulus ω(·).

ωH1(δ) 6 ω√λ(δ) + ||
√
λ||∞ · ωcos

(√
θ212+θ213+2θ12θ13 cos Θ213

)(δ) + ωγ1(δ)

6 ω√λ(δ) + 3 · 1

2
· ω(θ212+θ213+2θ12θ13 cos Θ213)(δ) +

7

2
δ.
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Here we used λ 6 9,
√
λ 6 3,

∣∣ d
dt(cos(

√
t))
∣∣ 6 1/2, |(sin t)/t| 6 1, and | ddt((sin t)/t) 6 1/2|. Also,

the term (7/2)δ appears since δ−1ωγ1(δ) 6 ||∇R3γ1(θ12, θ13, θ23)||1 6 7/2. Now, observe that

∂λ

∂θ12
= 2

sin θ12

θ12

(
d

dx

sinx

x

∣∣∣∣
x=θ12

)
+ 2

sin θ13 sin θ23

θ13θ23
(− sin θ12)

+ 2

(
d

dx

sinx

x

∣∣∣∣
x=θ12

)
sin θ13

θ13
cos θ23 + 2

(
d

dx

sinx

x

∣∣∣∣
x=θ12

)
sin θ23

θ23
cos θ13.

So, taking absolute values, and using that |sin(t)/t| 6 1 and
∣∣ d
dt(sin(t)/t)

∣∣ 6 1/2, we see that

|∂λ/∂θij | 6 5. So, if λ(~θ) = λ(θ12, θ13, θ23) > η > 0 for some η, and if ~x = (x, y, z) satisfies
|x− θ12| < δ, |y − θ13| < δ, |z − θ23| < δ, then at ~x,∣∣∣∣∣∂(

√
λ)

∂θ12

∣∣∣∣∣ 6 max
{~θ∈R3 : ||~θ−~x||∞<δ}

1

2

1√
λ(~θ)

· ∂λ(~θ)

∂θ12
6

1

2

1√
η − ||∇R3λ||1 δ

· 5 6 1

2

1√
η − 15δ

· 5.

Therefore, for such ~x,

||∇R3(
√
λ)||1 6

15

2
√
η − 15δ

.

Combining this estimate with our estimate above, we get the following modulus estimate, that

applies to ~x, ~θ as just described

ωH1(δ) 6 δ

[
7

2
+

15

2
√
η − 15δ

+ 3

(
2(θ12 + δ) + 2(θ13 + δ)

+ (θ12 + δ)(θ13 + δ)

(
2

sin(θ12 + δ)
+

2

sin(θ13 + δ)
+

1

sin(θ12 + δ) sin(θ13 + δ)

))]
.

We used here the monotonicity of the function x 7→ x/ sinx and the following identities for

ψ(θ12, θ13, θ23) = (θ2
12 + θ2

13 + 2 θ12θ13
sin θ12 sin θ13

(cos θ23 − cos θ12 cos θ13)),

1

2

∂ψ

∂θ12
= θ12 +

θ12θ13

sin θ12 sin θ13
(sin θ12 cos θ13)

+ (cos θ23 − cos θ12 cos θ13)(θ12/ sin θ12)′ · (θ13/ sin θ13)

= θ12 +
θ12θ13

sin θ13
cos θ13 + cos Θ213

(
1− θ12

tan θ12

)
θ13,

1

2

∂ψ

∂θ13
= θ13 +

θ12θ13

sin θ12 sin θ13
(sin θ13 cos θ12)

+ (cos θ23 − cos θ12 cos θ13)(θ13/ sin θ13)′ · (θ12/ sin θ12)

= θ13 +
θ12θ13

sin θ12
cos θ12 + cos Θ213

(
1− θ13

tan θ13

)
θ12,

1

2

∂ψ

∂θ23
=

θ12θ13

sin θ12 sin θ13
(− sin θ23).

�

Analogous estimates give a gradient bound for F0, as defined in (43). Since F0 is symmetric in
its arguments, it suffices to take a derivative with respect to one variable. Fix (θ12, θ13, θ23), and
let 0 < δ < 1/100. For any (x, y, z) such that |x− θ12| < δ, |y − θ13| < δ, |z − θ23| < δ we have the
following derivative bound
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∣∣∣∣ ∂F0

∂θ12

∣∣∣∣ 6 6(θ12 + δ) +
2(θ13 + δ)(θ23 + δ)

sin(θ13 + δ) sin(θ23 + δ)
+ 2

(θ12 + δ)(θ13 + δ)

sin(θ13 + δ)

+ 2
(θ12 + δ)(θ23 + δ)

sin(θ23 + δ)
+ 2(θ13 + θ23 + 2δ)

(
1− θ12 + δ

tan(θ12 + δ)

) (70)

The restrictions of (67) and the bounds of (68) and (70) finally yield Theorem 1.1.

Proof of Theorem 1.1. Let P be a partition of the sphere S2 that maximizes
∑4

i=1 ||zi||22. Arguing
by contradiction, we may assume that this partition exceeds the value of the spherical propeller
partition, 9π2/4. From Proposition 3.1 we may assume that P is a collection of four nonempty
spherical triangles along with four vertices such that det(v1, v2, v3) > 0. Since P is a global
maximum of F , it satisfies three equations in the three variables {θ12, θ13, θ23} defined by (65). We
may restrict these variables via (67). We may also exclude neighborhoods of the two candidate
maxima found in Section 3, using Lemma 4.1. Combining the estimates of (68),(69) and (70) gives
sufficient information for an ε-net traversal of the parameter space defined by (67). This numerical
computation finds that no zeros of the system (65), within the parameter space defined by (67),
exceed the objective value of the propeller partition. This computation contradicts the assumed
existence of a maximal P with four nonempty elements. So, recalling (8),

∑4
i=1 ||zi||

2
2 6 9π2/4 =

2π3(9/(8π)). �

4.1. Implementation. We describe the ε-net traversal of Theorem 1.1 further below. Before doing
so, we describe some issues related to the numerical verification of inequalities. In particular, we
discuss how a computer can rigorously verify a mathematical statement. Recall that a normal
double precision floating point number in the IEEE-754-2008 standard is a number in base two of
the form

±1.a1a2a3 · · · a52 × 2b1b2···b11−210 ,

where ai ∈ {0, 1} and b1b2 · · · b11 ∈ [2, 211 − 1] ∩ Z. All of our computations are done with this
discrete set of numbers, with zero included as well. Note that the distance between two consecutive
numbers changes according to the values of the two numbers. For example, the distance between 1
and the next largest number is 2−52, whereas the distance between 2 and the next largest number is
2−51. (In general, if the number 2k and the next largest number can be represented in this system,
then their distance is 2−52+k.) Due to this spacing between numbers, one must round the result
of any arithmetic operation. For example, the addition 1 + 2−54 evaluates to 1, if we choose to
round to the nearest double precision number. For the sake of flexibility, our analysis below applies
regardless of the rounding scheme that is chosen.

For x, y ∈ [0, 2500] where x, y are normal double precision numbers, let fl(x + y) denote the
normal double precision number that is evaluated in a computer with the IEEE-754-2008 standard.
It suffices for now to note that (x + y) 6 (1 + 2 · 2−52)fl(x + y). In this case, we say that (x + y)
has multiplicative error bounded by (1 + 2 · 2−52). When we speak of numerical error, we mean
multiplicative error, unless otherwise stated. Define

ε = 3 · 2−52.

To verify inequalities in our numerical computations, we perform operations for several floating
point numbers and keep track of error bounds of the form (x + y) 6 (1 + 2 · 2−52)fl(x + y). Since
(1 + 2 · 2−52)N 6 (1 +N · 3 · 2−52) = (1 +Nε) for 1 6 N 6 30000, we can bound the multiplicative
error of N operations with a multiplicative term of the form (1 + Nε). (Here and below we are
overly conservative in our error estimates.)

We now present the formulas that are used in our computations, delaying further discussion
of numerical errors. Let x, y > 0 be two normal double precision floating point numbers with
x > y. A loss of significance refers to a loss of binary significant digits in the computation of
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fl(x− y). One can show that fl(x− y) loses at most q and at least p significant binary digits, where
2−q 6 1− (y/x) 6 2−p. Due to potential loss of significance errors, we evaluate λ as

λ =

(
sin2 θ23

θ2
23

+
sin2 θ13

θ2
13

+
sin2 θ12

θ2
12

)
+ 2

(
sin θ23 sin θ13

θ23θ13
cos θ12

+
sin θ23 sin θ12

θ23θ12
cos θ13 +

sin θ12 sin θ13

θ12θ13
cos θ23

)
.

(71)

Our numerical computation of inequalities consists of four steps.
(Step (i)) Suppose we want to check (67) for a closed `∞ ball (i.e. a cube) of radius δ with center
(θ12, θ13, θ23) ∈ [0, π]3. To do so, we must verify the following perturbation of (67).

(θij + θj` + 3δ) > θi`
θ12 + θ23 + θ13 6 (2π + 3δ)

θ12 6 (2π/3 + δ)(1 + 10ε)

θ13 + 1/2, θ23 + 1/2 6 (π + δ)(1 + 10ε)

(δ + maxi,j∈{1,2,3},i 6=j{θij})(1 + 7ε) > π 3
2
√

14
(1− 5ε)

(θij + δ)(1 + 7ε) > (1/10)(1− ε)
−(3δ +

√
99

10 (sin θij sin θj` + 2δ))(1 + 1500ε) 6 (cos θi` − cos θij cos θj` + 2000ε)

(cos θi` − cos θij cos θj` − 2000ε) 6 (3δ +
√

99
10 (sin θij sin θj` + 2δ))(1 + 1500ε)

(15δ + 2 · 104ε+ λ) > .03293

(72)

If a given inequality of (72) does not hold, then the corresponding inequality of (67) is violated for
the entire `∞ ball of radius δ.
(Step (ii)) If all of the inequalities of (72) are satisfied, we then check if (θ12, θ13, θ23) lies in a
neighborhood of two of our known candidate global optima. Let ~x = (x1, x2, x3) ∈ [0, π]3. Suppose
x1 = x2 = x3 = arccos(−1/3) or x1 = x2 = x3 = 1.5379684120790425. From Lemma 4.1, we know

that if ~θ = (θ12, θ13, θ23) is close to ~x, then F is bounded by (9/4)π2 in B3
∞((θ12, θ13, θ23), δ). That

is, if the following is not satisfied, then F is bounded as just stated.[
(d`2(~θ, ~x))2 + 40000ε+ 2δ

(
d`1(~θ, ~x) + 6000ε+ 3δ

)]
(1 + 20ε) > ((1/100)2)(1− 2ε). (73)

Here d`2 and d`1 denote the usual `2 and `1 metrics on R3.
(Step (iii)) If the verification of (73) fails, we use the modulus estimates of Lemma 4.3 to see if H

is near zero at ~θ, with H = (H1, H2, H3) defined after (65). Let α, β, ρ, σ ∈ {±1}. We first check if
the following expression has constant sign, over the 24 such choices of α, β, ρ, σ.[

cos

(√
θ2

12 + θ2
13 + 2θ12θ13

(
cos θ23 − cos θ12 cos θ13 + 2000εα

sin θ12 sin θ13

))
+ 25000εβ

]
·
√
λ− 2 · 104εσ + (γ1 + 3000ερ).

(74)

If (74) is well-defined and its sign is constant, we then consider the following inequalities involving
Hi for i = 1 and (68).

min
α,β,ρ,σ∈{±1}

∣∣∣∣∣
[

cos

(√
θ2

12 + θ2
13 + 2θ12θ13

(
cos θ23 − cos θ12 cos θ13 + 2000εα

sin θ12 sin θ13

))
+ 25000εβ

]

·
√
λ− 2 · 104εσ + (γ1 + 3000ερ)

∣∣∣∣∣(1− 3000ε) > (1 + 3000ε)G(δ, ~θ, λ− 2 · 104ε).

(75)
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min
α,β,ρ,σ∈{±1}

∣∣∣∣∣
[

cos

(√
θ2

12 + θ2
13 + 2θ12θ13

(
cos θ23 − cos θ12 cos θ13 + 2000εα

sin θ12 sin θ13

))
+ 25000εβ

]

·
√
λ− 2 · 104εσ + (γ1 + 3000ερ)

∣∣∣∣∣(1− 3000ε)

> (1 + 5ε)
√

15δ + δ(1 + 3000ε)

[
7

2
+ 3

(
2(θ12 + δ) + 2(θ13 + δ)

+ (θ12 + δ)(θ13 + δ)

(
2

sin(θ12 + δ)
+

2

sin(θ13 + δ)
+

1

sin(θ12 + δ) sin(θ13 + δ)

))]
.

(76)

The inequalities for H2 and H3 are constructed by permuting cyclically the indices appearing
above. If at least one of (75) and (76) is satisfied (for at least one Hi), then Hi is nonzero on

B3
∞((θ12, θ13, θ23), δ).

(Step (iv)) If (75) and (76) are not satisfied for {Hi}3i=1, we finally check the value of F0 directly,
using a modification of (43). Define

cos Θε
ijk =

(
cos θik − cos θij cos θjk + 2000ε

sin θij sin θjk

)
F ε0 = 3

(
θ2

12 + θ2
23 + θ2

13

)
+ 2 cos(Θε

213)θ12θ13 + 2 cos(Θε
123)θ12θ23 + 2 cos(Θε

231)θ23θ13,

Gε12(~θ, δ) = 6(θ12 + δ) +
4(θ13 + δ)(θ23 + δ)

sin(θ13 + δ) sin(θ23 + δ)
+ 2

(θ12 + δ)(θ13 + δ)

sin(θ13 + δ)

+ 2
(θ12 + δ)(θ23 + δ)

sin(θ23 + δ)
+ 2(θ13 + θ23 + 2δ)

[
1−

(
θ12 + δ

tan(θ12 + δ)
(1 + 1200ε) + ε

)]
.

If the following is satisfied, then F0 is bounded by (9/4)π2 in B3
∞((θ12, θ13, θ23), δ), and therefore

F satisfies the same bound for any global maximum of F in this ball.

(9/4)π2(1− 5ε)− F ε0 · (1 + 5000ε) > δ(Gε12 +Gε13 +Gε23)(1 + 104ε) + 100ε. (77)

Given these estimates, we can now describe the ε-net traversal of Theorem 1.1. We need a
discrete subset N = {xi} ⊆ [0, π]3 together with a set of radii δi > 0 such that⋃

xi∈N
B3
∞(xi, δi) ⊇ [0, π]3,

and such that one of the following cases occurs, for (xi, δi) with xi ∈ N .

(i) One inequality of (72) does not hold.
(ii) (73) does not hold.

(iii) (75) or (76) holds, and (74) has constant sign over all sign choices α, β, σ, ρ ∈ {±1}.
(iv) (77) holds.

In case (i), B3
∞(xi, δi) is either outside of the domain of (65) or (65) cannot be satisfied in B3

∞(xi, δi).

Case (ii) implies that F =
∑4

i=1 ||zi||
2
2 is bounded by (9/4)π2 on B3

∞(xi, δi). Cases (iii) and (iv)

imply that no global maximum of F occurs in B3
∞(xi, δi). So, the existence of N as defined above

completes the proof of Theorem 1.1.
To construct N , we perform the following standard procedure. Begin with the grid

N0 =
π

100
([0, 100]3 ∩ Z3) ⊆ [0, π]3.

For each point x ∈ N0, check the inequalities discussed above with δ = δ0 = π/200. If we discover
that x satisfies one of (i) through (iv), then eliminate x from the set N0. Next, include the element
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(x, δ) in the set N . Let N ′0 be the set of all points x ∈ N0 that have not been included in N . We
now “refine” the grid N ′0 by a factor of 10 and repeat the above procedure. That is, we define

N1 =
( π

1000
([0, 1000]3 ∩ Z3)

)
∩

 ⋃
xi∈N ′0

B3
∞(xi, π/200)

 .

For each point x ∈ N1, we now check (i)-(iv) with δ = δ1 = π/2000, and so on. For j > 1, at the
jth iteration of this algorithm, we define

Nj =
( π

10j+2
([0, 10j+2]3 ∩ Z3)

)
∩

 ⋃
xi∈N ′j−1

B3
∞(xi, π/(2 · 10j+1))

 .

We continue in this manner until the procedure terminates. Upon termination at the jth step,
N ′j = ∅, so N satisfies our desired properties and proves Theorem 1.1.

We now return to our discussion of numerical error. To keep track of rounding errors resulting
from subtractions, we use absolute error where appropriate and add the ε terms that correspond to
absolute numerical errors. These additive terms are scaled according to the absolute value of the
numbers being subtracted (due to the unequal spacing of floating point numbers described above).

In the description and analysis of (i) through (iv), δ terms come from modulus of continuity
estimates, and ε terms account for numerical error. The latter is discussed further below. The
first two inequalities of (72) contain no ε terms, since they can be checked in exact arithmetic. Let
x ∈ [0, π − 1/2 + 2× 10−2]. (We make this restriction due to the fourth inequality of (72).) Let us
discuss the numerical computation of the sine function. If x > π/2, we replace x with π − x, and
we evaluate sin(π− x). Thus, we only need to consider x ∈ [0, π/2]. For such x, we first use a 19th

degree (ten term) Taylor expansion around zero, summing terms in ascending degree. In perfect
arithmetic, we get a multiplicative error of one plus∣∣∣∣ x21

(21!) sin(x)

∣∣∣∣ =

∣∣∣∣ x

sin(x)

x20

(21!)

∣∣∣∣ 6 π

2

(π/2)20

21!
< 2.6× 10−16 <

ε

2
.

Since x ∈ [0, π/2], there are no loss of significance errors in the summation of the series. The
addition of each term of the Taylor series involves one operation, and there are ten such terms.
Moreover, the nth term contains n+ 1 operations. In total, one evaluation therefore has less than
210 operations. So, very conservatively, the multiplicative error of sin(x) is bounded by (1 + 250ε),
if x is represented exactly. If the argument x has multiplicative error (1 + kε), then this same
analysis shows that the multiplicative error of sin(x) is bounded by (1 + (250 + 100k)ε), since the
term x appears 100 times in the formula for sin. For example, since θij has multiplicative error
(1 + 3ε), we conservatively bound the error of sin θij by (1 + 550ε).

To compute cos(x) for x ∈ [0, π − 1/2 + 2 × 10−2], we instead compute sin(π/2 − x) with the
procedure outlined above. Due to our representation of the points θij , we compute π/2 − x as a
rational multiple of π, so no loss of significance errors occurs in this subtraction. Hence, the error
estimates for cos θij are exactly the ones already used for sin θij . However, when evaluating the
cosine of more complicated expressions, we need to revert to absolute errors.

We will also need to use the square root function. Here we use the usual Newton’s Method
iteration, which is well known to have multiplicative error bounded by (1 + ε).

We now describe the error terms appearing in (72), which are perturbations of (67). The guiding
principle is that we want to perturb each inequality so that it is more easily satisfied. To see why this
is done, suppose an inequality of (72) is not satisfied. Then, a modulus of continuity estimate and
a numerical error estimate, used in the definition of (72), show that the corresponding inequality
of (67) is not satisfied in an `∞ ball of radius δ. For example, contrast the first inequality of (67)
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with that of (72). We need only add an additional δ term for each θij term, since the modulus
of continuity of the function (x, y, z) 7→ x + y + z, viewed as a mapping from (R3, ||·||∞) → R, is
exactly 3δ.

So, if the inequality of (72) is violated at a given point ~θ = (θ12, θ13, θ23), then the modulus of

continuity bound shows that the corresponding inequality of (67) is violated in the ball B3
∞(~θ, δ).

The same considerations apply to the second inequality of (72). Note that the first and second
inequality are checked in exact arithmetic in our computer implementation, so we do not need to
take into account numerical error. As we have mentioned above, our θij and δ are represented as
numbers of the form π(a/c) where a and c are integers, and it suffices to perform additions of the
form π((a+ b)/c), and the integer addition a+ b can be performed with no error.

The third inequality of (72) only requires a modulus of continuity term of δ. However, we must
now take into account numerical errors. We count ten numerical operations on positive numbers
(including the error in representing π as a floating point number three times), so in the worst case,
the multiplicative error is bounded by (1 + 10ε). Similar considerations apply in the next three
inequalities. In the seventh and eighth inequalities, we use our analysis of the sine function, and
recall that the multiplicative error for these operations is always bounded by 1 + 550ε. So, in total,

the evaluation of the term −(3δ +
√

99
10 (sin θij sin θj` + 2δ)) has multiplicative error bounded by

1 + 1500ε. Here we have also included δ terms corresponding to the moduli of continuity, as before.
Unfortunately, we cannot use multiplicative error to deal with the cosine terms, since loss of

significance can occur in the evaluation of (cos θi`− cos θij cos θj`). However, since the cosine terms
are bounded by 1 in absolute value, the absolute error from each cosine evaluation is bounded
by 550ε. Therefore the total absolute error from the right hand side of the seventh inequality is
bounded by 2000ε. This bound applies similarly to the penultimate inequality of (72). The final
inequality of (72) is similar to the previous cases. To get the δ terms, we examine (71) and use
that |(sin(x)/x)′| < 1/2 and |sin(x)/x| 6 1 for x ∈ [0, π]. To get the ε terms, note that each term
sin2 θij/θ

2
ij has absolute error bounded by 1200ε. And each term sin θij sin θjk cos θik/θijθjk has

absolute error bounded by 1700ε. The total absolute error of λ is therefore bounded by 2 · 104ε.
We now treat (73). First, recall that (18) yielded our two known zeros of the system (65). The

first zero θij = θ = arccos(−1/3) is known exactly (up to multiplicative error (1± ε)). However, we
can only find the second zero computationally. For the purposes of our computations, we therefore
show that this second zero is contained in an interval of the form θij = θ ∈ [x− 2000ε, x+ 2000ε]
where x = 1.5379684120790425. To see this, we take (18) and write it as a quotient of the left side
over the right side, and we wish to find where the quotient is 1. For θ ∈ [x − 2000ε, x + 2000ε],
the multiplicative error involved in calculating this quotient is bounded by 1 + 3000ε. This follows
by our analysis of the sine and cosine functions, and since this particular region of parameters
avoids loss of significance errors. We can then check numerically that, for θ = x − 2000ε, this
quotient, multiplied by (1 + 3000ε) is less than 1, while for θ = x+ 2000ε, the quotient, multiplied
by (1−3000ε), is greater than 1. So, by our numerical analysis and continuity of the given function,
a solution of (18) must lie in the interval θ ∈ [x− 2000ε, x+ 2000ε].

We can now confront the errors of (73). Once again, the guiding principle is to add error

terms so that the inequality is more easily satisfied. First, the term d`2(~θ, ~x)2 is the sum of three
squared differences. Due to numerical error in the operations, and the uncertainty of the zero θij ≈
1.5379684120790425, each squared difference has an absolute error bounded by 2π(2000ε) + 100ε.
(The factor of 2π comes from the squaring of the difference, and since |x| 6 π.) So, in total, the

absolute error from the term d`2(~θ, ~x)2 is bounded by 40000ε. Since we want to check this inequality
in an `∞ ball of radius δ, we use the modulus of continuity of d2

`2
, which is 2δd`1 . We therefore add

the term 2δd`1(~θ, ~x), and again add terms to this quantity to take into account its own absolute
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error and its own modulus of continuity. The combined effect of summing the error terms then
accumulates a multiplicative error bounded by 1 + 20ε.

We now explain the error terms of (75). From the analysis of the cosine, we know that cos θij
for θij ∈ [0, π − 1/2 + 2 × 10−2] has an absolute error bounded by 550ε. (This follows since the
multiplicative error is bounded by (1 + 550ε), and |cos(·)| 6 1.) So, the expression cos θ23 −
cos θ12 cos θ13 has absolute error bounded by 2000ε. The remaining operations under the square
root of (75) all have multiplicative error bounded by (1 + 1200ε).

When the cosine of the square root term is evaluated, we need to again take into account absolute
errors (since, unlike in the cos θij terms, we must now account for loss of significance). Since the
argument of the cosine term is bounded by π, we can bound the absolute error of the square root
term by 4000ε. To take the cosine of the square root term, we need to return to our Taylor series
analysis. Note that our Taylor series has Lipschitz constant bounded by 6. (This is a conservative
bound that does not account for cancelations in the series summation.) Therefore, the total absolute
error of the cosine of the square root in (75) is bounded by 25000ε. From before, the absolute error
in the computation of λ in (71) is bounded by 2 ·104ε. Similarly, the computation of γ1 has absolute
error bounded by 3000ε.

Temporarily ignoring any numerical errors, note that we are computing a bound for the absolute
value of the derivative of a function. So, in order to conclude anything from (75), the sign of (74)
must be constant over all possible numerical errors. (If not, it may be that (74) has an actual value
of zero.) Given that this sign is constant, we then take the minimum over all possible numerical
errors. It then suffices to take the minimum over the extreme points of a suitable rectangle, due
to monotonicity of (75) with respect to the error terms. Note that we take the minimum since
we wish to make the inequality more difficult to be satisfied. Finally, the addition of all terms on
the left side of the inequality incurs a multiplicative error bounded by 1 + 3000ε, and the addition
of the terms on the right side has multiplicative error bounded by 1 + 3000ε. A similar analysis
applies to (76).

We now briefly mention the analysis of (77), which is routine at this stage. The principle that
we apply here is to make (77) more difficult to be satisfied, so we make its right side larger and
its left side smaller. The multiplicative error of the F ε0 term is bounded by 1 + 5000ε, since each
cos Θε

ijk term has multiplicative error bounded by 1 + 1200ε. Each Gεij term has multiplicative

error bounded by 1 + 2500ε, so the right side of (77) has multiplicative error bounded by 1 + 104ε.
A 100ε term is added to the right side of (77) to account for the error of the subtraction on the
left side. The 1 + 1200ε term and the ε term in the definition of Gεij account for the errors of the
tangent function, and the loss of significance in the subtraction that occurs in the square brackets.

5. Discrete Harmonic Maps into the Sphere

We now summarize and reinterpret the results of Section 3. Recall that we defined G(P ) =∑
16i<j64 θ

2
ij as the sum of the squared lengths of the edges of our partition P . We then saw from

Propositions 3.13 and 3.1 that all maxima of F are also critical points of G. We also found that
critical points of G satisfy (51). Given a partition P , think of its edges as rubber bands. (Recall
that a rubber band has energy given by its length squared, and it exerts a force proportional to
its length.) The critical points of G are given by configurations of rubber bands (arranged like
the edges of Figure 2(b)) that are at equilibrium with respect to the forces exerted by the rubber
bands. With this interpretation, (51) becomes intuitively clear. This equation says that, at a fixed
vertex, the (tangential) forces of the incident rubber bands are in equilibrium. (For the Euclidean
version of this, see e.g. [10] and [31].)

These considerations lead us naturally to the following generalization. Let (V,E) be a (finite)
graph. Let u : (V,E) → S2 be an embedding of (V,E) into S2 (u is sometimes called a map). To
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be consistent with the above, let u(V ) = {vi}, and label Length(u(vivj)) = θij where vivj denotes
a spherical geodesic connecting vi to vj . Then a harmonic map u is a critical point of the energy
functional

∑
{i,j}∈E θ

2
ij .
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