A DOUBLING SUBSET OF L, FOR p > 2 THAT IS
INHERENTLY INFINITE DIMENSIONAL

VINCENT LAFFORGUE AND ASSAF NAOR

ABSTRACT. It is shown that for every p € (2,00) there exists a
doubling subset of L, that does not admit a bi-Lipschitz embedding
into R* for any k € N.

1. INTRODUCTION

Given K € [1,00), a metric space X is said to be K-doubling if every
ball in X can be covered by at most K balls of half its radius. X is
said to be doubling if it is K-doubling for some K € (0, 00).

Lang and Plaut [LP01] asked whether or not every doubling subset of
Hilbert space admits a bi-Lipschitz embedding into R* for some k € N.
We refer to [NN12, Sec. 1.1] for further discussion on the ramifications
of this question, as well as a construction of a doubling subset of Hilbert
space that conceivably does not to admit a bi-Lipschitz embedding into
R* for any k € N. While the validity of this suggestion of [NN12]
remains open, and hence also the Lang—Plaut question remains open,
here we show that a variant of the method that was proposed in [NN12]
can be used to prove that the analogue of the Lang—Plaut problem with
Hilbert space replaced by L, for p € (2,00) has a negative answer.

Theorem 1.1. For every p € (2,00) there exists a doubling subset of
L, that does not admit a bi-Lipschitz embedding into R for any k € N.

We thank Ofer Neiman for asking us the question that Theorem
answers. In [BGN13| Bartal, Gottlieb and Neiman concurrently found
a construction that also yields Theorem [I.T} their (combinatorial) con-
struction is entirely different from our (analytic) construction. The
potential validity of Theorem for p € (1,2] remains an open ques-
tion, while for p = 1 stronger results are known; see Remark below.

Theorem is a special case of the following result.

Theorem 1.2. For every p € (2,00) there exists a doubling subset
D, of L, that does not admit a bi-Lipschitz embedding into L, for any
q € (1,p). Furthermore, there exists py € (2,00) such that D, does not
admit a bi-Lipschitz embedding into Ly for every p € [pg,o0).
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Theorem [1.2]is a formal consequence of the following finitary result.

Theorem 1.3. There exists a universal constant K € [1,00) and for
every n € N there exists an n-point metric space (X,,dx,) with the
following properties. For every n € N and p € [2,00) there exists a
mapping fnp : Xy — Ly such that f,,(X,) C L, is K-doubling, and

Va,y € X, dx, (2,y) < [ fap(®) = Fap@)lp S (logn)Pdx, (z,y).
Moreover, for every q € (1,00), any embedding of X,, into L, incurs
distortion at least c¢(q)(logn)™™/21/4 " where ¢(q) € (0,00) may de-
pend only on q. Any embedding of X,, into L1 incurs distortion at least
(logn)¢ for some universal constant ¢ € (0,1/2].

Here and in what follows, the notations A < B and B 2 A mean
that A < CB for some universal constant C' € (0,00). If we need to
allow C to depend on parameters, we indicate this by subscripts, thus
e.g. A Sz B means that A < C(f)B for some C(f) € (0,00) which
is allowed to depend only on the parameter 5. The notation A < B
stands for (A < B) A (B S A).

The fact that Theorem implies Theorem is simple. Indeed,
fix p € (2,00). By a standard “disjoint union” argument (see e.g. the
beginning of Section 4 in [NN12]), there exists a doubling subset D,, of
L, that contains an isometric copy of a rescaling of f, ,(X,,) for every
neN. If ¢ € (1,p) and f,,(X,) embeds with bi-Lipschitz distortion
M € [1,00) into Ly, then by Theorem we have

M 2z, (logn)min{%%}_% m 0.
Consequently, D, does not admit a bi-Lipschitz embedding into L,. For
q = 1 the same argument shows that D, does not admit a bi-Lipschitz
embedding into Ly provided p > 1/¢, where ¢ is the (universal) constant

from Theorem [L.3l

Remark 1.4. The above reasoning implies that for every p € (2,00)
and every n € N there exists an n-point O(1)-doubling subset S, of L,
such that for every k € N, if S,, embeds with distortion M € [1,00)
into ¢% then necessarily,

This is true because E’; embeds into Hilbert space with distortion k27,
It is open whether or not a similar statement holds true for p € (1, 2].
For p = 1 an even stronger lower bound was shown to hold true
in [LMNO5]: for every n € N there exists an n-point O(1)-doubling
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subset A,, of L; such that for every k£ € N, if A,, embeds with distor-
tion M € [1,00) into ¢¥ then necessarily

logn
Mz 4/ . 1

The examples leading to ([1)) are the Laakso graphs [Laa00], which are
doubling metric spaces that were shown to embed into Ly in [GNRS04].
They yield a doubling subset of L; that does not admit a bi-Lipschitz
embedding into Hilbert space [Laa00] (see also [LP0I, Thm. 2.3]), any
uniformly convex Banach space [MNOS], or even any Banach space with
the Radon-Nikodym property [Ost11].

1.1. The Heisenberg group. The metric spaces {X,,}>°, of Theo-
rem arise from the discrete Heisenberg group. To explain this, recall
that the discrete Heisenberg group, denoted H, is the group generated
by two elements a, b € H, with the relations asserting that the commu-
tator [a,b] = aba~'b~! is in the center of H. Let e denote the identity
element of H. The left-invariant word metric on H induced by the sym-
metric generating set {a,b,a™!,b71} is denoted dy (-, -). For r € [1,00)
let B(r) ={z € H: dw(z,eq) < r} denote the corresponding closed
ball of radius r. Then |B(r)| < r* (see e.g. [Bla03]). It follows that
there exists 71,72 € (0,00) such that for every large enough n € N
there exists X,, C H with |X,,| =n and

By virtue of the leftmost inclusion in , the distortion lower bounds
that are asserted in Theorem follow from [CKNT1] for ¢ = 1,

from [ANTI0] for ¢ = 2 and from [LN12|] for ¢ € (0,00) \ {2}. The
remaining assertions of Theorem follow from Theorem below.

Theorem 1.5. For every ¢ € (0,1/2] and p € [2,00) there exists a
mapping F., : H — L, such that F.,(H) C L, is 2'°-doubling and

dW ( x, y)lfs
el/p

The case p = 2 of Theorem was previously proven in [LNOG]
relying on Hilbertian arguments, namely on Schoenberg’s characteriza-
tion [Sch38] of subsets of Hilbert space through positive definite kernels.
Here we find a different approach that works also when p € (2, 00).
Note that [LNO6] contains a stronger statement that is used crucially
in the context of [LN06] and does not follow from our proof.

Theorem [L.5]implies Theorem[I.3]because in light of the rightmost in-
clusion in (2)), all the nonzero distances in X,, are between 1 and 21, /n.

Va,ye H, dW(xa y)l_s < HFs,p(x) - Fs,p(?/)”p N
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Consequently, for &, = 1/logn we have dy (z,y)' =" < dyw (z,y) for ev-
ery x,y € X,. We can therefore take f,, = F., , in Theorem [I.3

Remark 1.6. The dependence on ¢ in Theorem is asymptotically
sharp as e — 0. For p = 2 this was proven in [NN12] using an inequality
of [ANT10]. An analogous argument works for p € (2, 00) using [LN12]
instead of [ANTI0]. Indeed, write ¢ = [a,b] (recall that a,b are the
generators of H). By [LN12] every f : H — L, satisfies

I (we™) = @115
Z Z k;1+p/2

k=1 z€By
S 3 (I5@a) - s@lz + 15 - 7@ 3)

z€B21n
Suppose that M € [1,00) satisfies
Viy B, (o) <) - Sl < Mdw(z ). (4
Since dy (c*,eq) = Vk and |B(m)| < m* for every k,m € N (see
e.g. [Bla03]), by substituting into (3)) we see that

l €)p/2

< MPn*
Zn ka/Q Sp MPnc.
Hence MP Z, "7, —k1+sp/2 >, 2 2,50 Mz, 1/e'/P,

2. PROOF OF THEOREM [L.5]

For every n € N and x € R*"*! let 7(x) € R*" denote the canonical
projection of z to R*", i.e,
def
W(Ilyx% -, Lop, fL‘Qn—‘,—l) - (xla cee 7x2n)-

For z,y € R?" write

n

2n
def def
T, y) = E T;Y; and [z, y] = E («T2j—1y2j_‘r2jy2j—1)'
J=1

j=1

. def
We also write as usual [|z|2 = \/(z, ).
The Heisenberg group product on R?"*! is defined as follows. For
every x,y € R*! let zy € R*1 = R?" x R be defined as

def
zy = (m(2) + 7(Y), T2ns1 + Yons1 — 2m(2), 7(y)]) .
Under this product R?"*! becomes a noncommutative group, called the
nth (continuous) Heisenberg group and denoted H,,, whose identity
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element is 0 € R?"*! and the multiplicative inverse of z € R?*! is
given by 27! = —xz; see e.g. [Sem03]. The Lebesgue measure on R***+1
is a Haar measure for H,,.

The Koranyi norm of x € R*"*! is defined by

def 1/4
N(@)  (|r@)|4 + 22,0) "

As shown in e.g. [Cyg81], we have N(zy) < N(z) + N(y) for every
x,y € R**1 Consequently, if we set

Va,y R dy(z,y) € N ),

then dy is a left-invariant metric on H,. For every # € R define
50 - R2n Tl _y R2n+1 by

Vz € R2n+17 59(I) d:ef (971'([)3), 0255271—!—1) : (5)
Then dy(dg(), 0e(y)) = |0|dn(x,y) for every z,y € R*1,

Fix p € [1,00) and € € (0,1). Choose an integer n € N such that
ni<p<n—+1, (6)
and define
afi:efQ”;z_He. (7)

Note that by the choice of n we have a € [1 +¢,3 +¢) C (1,4). For
every z,z € R {0} define T'(z)(y) € R by

def 1 1
T(%)(Z’) - N(J}_lZ)a N(Z)O‘. (8)

Lemma 2.1. For every R € (0,00) we have

dz 1/p Rl-¢
</BN(O,R) N(Z)“p) T p(l—e)/r

Proof. This is a straightforward computation. First, since
By(0,R) C {z € R* 1 |l7(2)]l2 S R A zons| < RQ}, 9)

by integration in polar coordinates on R?" we have,

dz 1/p
</BN(0,R) N(Z)ap)
R R2 dt 1/p
< / 2N Vg1 / T ovap/d dr (10)
0 —r2 (rt +12)7P

_L( % dar N\ R .
~p \Jo rertl) T p(l =)l "
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where in V9, = m"/n! denotes the volume of the Euclidean unit ball

in R?". The penultimate inequality of uses the fact that v;/lp =1/p
(recall (6)). In the final step of we used (7). Using the inclusion

R R?
By(0,R) Dz e R™1: In(2)|a < —= A |29 <—} 12
w0.12 { Il < 1= A el < 21 12)

in place of @, the reverse inequality is proved analogously. l

Corollary 2.2. For every x € R*"™! and K € [1/3,00) we have

N(J})l_a " 1/p KI—EN(x)l—a
TESITES (/BN(O’KN@)) T (x)(2)["d ) S gm 1)

Proof. For the upper bound note that by the definition of 7" in ,

1/p
(/ T(o)(e P
By (0,KN(x))
dz 1/p dz 1/p
< " _
(/BN(O,KN(x)) N(Z)O‘p> (/BN(O,KN(I)) N(x_lz)ap>
dz 1/p dw 1/p
= -+ ,
(/BN(O,KN(x)) N(z)o‘p) (/BN(JC—l,KN(x)) N(w)o‘p>

where we used the fact that the Lebesgue measure on R?"*! is a Haar
measure of the Heisenberg group, and the left-invariance of the metric
dy. By the triangle inequality, By(z7!', KN(z)) C By(0,4KN(x)), so
the rightmost inequality in follows from Lemma .

If 2 € By(0, ( )/3)thenN(a7 12) > N(x)—N(z) > 2N(z), whence
N(z)™@ > 2N(x 12)7@ (using a > 1). So |T(z)(2)| = N(z)~ for every
z € By(0,N(z)/3). Since K > 1/3, the leftmost inequality in ((13]) now
follows from Lemma [2.1] O

Lemma 2.3. For every z € R*"™ we have T(x) € L,(R*"™) and

N(@)= [ 1 1
IT (@)l aomey S = <51/p+<1—5)1/p>' (14)

Proof. If z € R**1 \ By(0,2N(z )) then by the triangle inequality
for the Korényi norm we have N(z7'z) < N(z) + N(z) < 2N(z) and
N(x7'2) > N(z) — N(x) > N(z)/2. Consequently N(z7'z) < N(z)
for every z € R*"*! < By(0,2N(z)), and it therefore follows that

N@~'2) = NG)| _ N
TG S e S N
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We conclude that

1/p
(/ T(a)(e P
R27+1\ BN (0,2N(z))
dz 1/p
<ve (f W)
R2n+1 By (02N (2)) IV (2)(@F1P

U Lo e RS By (0.2N() ¢ 7)o > VT

where

and

y, {z e R™1 < By (0,2N(2)) : |[7(2)]|> < \/|z2n+1y}.
For z € U, we have ||7(2)]l2 < N(z) < 2||7(2)]|2, and therefore

1
( / dz )1/” _ / 2dw v
u, N(z)ltlp =\ Jweren: fufosn@y [Jw]| P

_ ©  Anwg,dr \ P o1 gy \ VP < 1 (16
- N() rlat+l)p—2n-1 ~ 5 N@) pl4pe ~ pgl/pN(x)e ’ )

If z € V, then \/|22n+1| < N(2) < 24/|22n41], and therefore

( v N a+1 )
2dt \/”
< (/ VOlQn ({w € RQn : le|2 < ﬁ}) ’ (a+1)p)
N(z)? t2

R N 1
- (/ (aq-}!—z)p ) S 1/ ’ (17)
N@?2t 2" pe'/PN(x)*
The desired estimate now follows from substituting and
into (15), and using Corollary 2.2 O

Corollary 2.4. Define S : R*"™ — L,(R*"1) by

def

S = p(1 —e)/PT. (18)

Then for every x,y € R*"*! we have

1—e (1 - 5)1/p 1—
dn(z,y) " S IS(@) = SW)llL,meniy S | 1+ ——7— ) dn(2,y)

51/13
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Proof. Observe that since the Lebesgue measure is a Haar measure for
the Heisenberg group,

15() = S()lleyerny = p(1 — &) VPIT () | oy
Hence the desired upper bound on ||S(x) — S(y)| 1, @2n+1) follows from

Lemma and the desired lower bound on [[S(z) — S(y)||L,®2n+1)
follows from the leftmost inequality in Corollary [2.2] O

Lemma 2.5. Let S be defined as in and let ¢ : R® — R?"HL pe
the canonical embedding of the corresponding Heisenberg groups, i.e.,

Y(a,b,c) € R?, d(a,b,c) def (a,b, 0,...,0,¢c) € R*H,
——
2n—2 times
Then S o p(R?) C L, (R>"*1) s 28/0=5) _doubling.
Proof. For 6 € (0, 00), recalling (5)) we have
15(06(x)) = S (00 (y)l| L, (men+)

P 1/p
- (/R+ N (59(;1)2)“ N (59(;1)2)‘“ dz)
1 1 P

1/p
92”+2dw> (19)

_(/ (32~ 1w>> NGy "w))e

2n+2 2n+2—ap ]_
R2n+1

P 1/p
o~ WG| ) @
=0"[S(x) — S(y )HLP R2n+1), (21)
Whe uses the change of variable 2z = dp(w) (so dz = 6*" 2dw),

and 1} uses the fact that N(dg(u)) = ON(u) for every u € R*F1,
For ([21)), recall the definition of « in ([7)).

Let 1 be the push-forward of the Lebesgue measure on R? under the
mapping S o ¢, i.e.,

p(A) = voly(67 (57 (4)))
for every Borel set A C So¢(R?) C L,(R**!). For f € L,(R**!) and
r € [0,00) let B,(f,r) denote the closed ball of radius r and center f
in L,(R*1), e, By(f,s) = {g € Ly(R**) = || f — gllp,men+1) < 7}
By for every 0 < r < R < oo and every f € S o ¢(R?) we have
¢~ o STHB(f. R) = & (ST (myma-a (671 0 ST (By(0,7))) .

Consequently,
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In particular,

w(By(f,2r)) 4/(1—¢)
VieSoo®), Vre (o), D20 pui-o
H (Bp(f7 T))
By a standard packing argument (see e.g. [CWTI], page 67]), this implies
that S o ¢(IR?) is a 2/(1=)_doubling subset of L,(R?"+1). O

Proof of Theorem[1.5. The discrete Heisenberg group H embeds into
the continuous Heisenebrg group H; as a co-compact discrete sub-
group. Hence (see e.g. [BBIOI, Thm. 8.3.19]) the metric space (H, dy)
is bi-Lipschitz to a subset of (R3 dy). By taking the mapping F.,
of Theorem to be the restriction of S o ¢ to H, the assertions of
Theorem m follow from Lemma and Corollary (observe that ¢
is an isometric embedding of (R3, dy) into (R**1 dy)). O

3. A REPRESENTATION THEORETIC PROOF OF THEOREM

Here we present a different proof of Theorem which uses the
Schrodinger representation of the Heisenberg group H,,. In what follows
it will be notationally convenient to consider the Heisenberg group H,
as being R™ x R" x R, equipped with the group product given by

(w0, w) (@ ) & (a0 0w’ = 2(u, o)+ 2(0,0)),
for every (u,v,w), (v/,v",w’") € H,. The corresponding Koranyi norm
is then given by

1/4
V(w,v,w) € By, N(wv,w) = ((uld+ [0l3)* +w?) ",
and for 6 € (0, 00) the Heisenberg dilation dg : H,, — H, is given by
V(u,v,w) € H,, do(u, v, w) = (QU,QU,QQM) .

The Schrodinger representation of H,, corresponding to A € (0, 00)
is defined as follows. For every (u,v,w) € Hl,, and h : R® — C define
ox(u,v,w)h : R" — C by

Vz eR", o (u, v, w)h(z) & eAw-2ur)H2iVAwD) ) (a; — 2\/Xu> :

One checks that this defines a unitary representation of H,, on Ly(R™),
i.e., that for every h € Ly(R™) we have |lo(x)h| 1,®r) = ||P]|Lo®n) and
ox(xzy)h = ox(x)or(y)h for every z,y € H,,.

Define g : R" — R to be

def 42l

g(z) =e
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so that [|g[17, @ = [ e~ 123y = /2

and x € R™ we have

. Then for every (u,v,w) € H,

o (u, v, w)g(x) = MW Hur)+2V M)~ gllelF+2V M uz) -2\ |lull3

Consequently,

Hg - UA(U’ U, w)gHig(R”)
= g, ey — 27 ( / g(x)m(u,v,w)gwx)

_ 27Tn/2 — 2R (/ 6iA(w—2<u,v>)+2i\/X<v,a:>—w||§+2\f)\<u,x)—2)\||u||§dl,)

_ o2 op (euw—A(u§+||vn§) / e—x—iﬁv—ﬁuu%daj)

= 27™/? <1 — A Iul3+iel) cos()«w)) . (22)

Let L,((0,00), L2(R™)) denote as usual the space of all measurable
mappings F': (0,00) — Lo(R™) that satisfy

) 1/17
def
11| 2, ((0,00). L (mY) = (/0 |]F(A)H§2(Rn)) < 00.

Note that since Ly(R™) embeds isometrically into L, (see e.g. [Woj91]),
also L,((0,00), L2(R™)) embeds isometrically into L,. For every mea-
surable mapping F': (0,00) — Lyo(R™) and every (u,v,w) € H,, define
o(u,v,w)F : (0,00) = Lo(R™) by

VA e (0,00), o(u,v,w)F(\) o ox(u,v,w)F.
Thus ¢ is an action of H,, on L,((0,00), L2(R™)) by isometries. Next,
define G : (0,00) — Ly(R™) by

Ve (0700)7 G<)‘> = o 1, 1—< (23)
\/§7TZ . )\E+ 2

Lemma 3.1. We have G —o(u,v,w)G € L,((0,00), Ly(R™)) for every
(u,v,w) € H,. Moreover,

|G = o(u,v, w)G||Lp((0,oo),L2(IR”))
0o 1/p
_ A(lul3+ ol bz dA

_ 1 1 5 o (1—6)/2 |w|(175)/2
= (61/13 + = 8)1/p> (Jlull3 + [lv]I3) + T (25)
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Proof. The identity is a substitution of into . Note that

1< 1—ab
3 (1—a)+(1-0)

(a,b) € (0,1) x (—=1,1) = <1 (26)

Indeed, the leftmost inequality in (26| is equivalent to the inequality

(14+0)(1 —a)+2a(l —b) >0, and the rightmost inequality in (26) is
equivalent to the inequality (1 —a)(1 —b) > 0. It follows from ([26)
that for every A € (0, 00) we have

1 — e MIRBHIIE) cog(Aw) =< (1 - e*A(IIUIIHvH%)) + (1 — cos(Aw)) .

Hence,

0o 1/p
(2l o2 dh
/0 (1 e~ lull3+11v13) cos()xw)) PNECESTIE

N 1/
_ (1- e—A(u%+||v||%))”/2 "
; =T

& p/2 dA v
+ </0 (1 — cos(Aw)) m)

o 2\ P
B 9 2\ (1—¢)/2 (1 —€ t)p
- (HUH2 + HUH2) </0 H1+(1—e)p/2 dt

o) p/2 1/p
(1-¢)/2 (1 — cost)
+ |U)| : </O ti+(1—¢)p/2 dt : (27)

VR

Note that

00 (1 _ e—t)l’/z 1/p 1 dt fe'e) dt 1/p
/0 At(1—2)p/2 dt = (/0 A—ep/2 +/1 tl-i-(l—a)p/?)

1 1
YR Y

X

(28)

and

IS p/2 1/p 1 %) 1/p
U=cosD2 ) o (f gwvamzagyy [T 4t
0 t1+(1—e)p/2 0 1 tl+(1—€)p/2

= m (29)

By combining with and we obtain ([25)). O
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Second proof of Theorem[1.5 Fix an arbitrary isometric embedding J
of L,((0,00), L2(R")) into L, and define Q : H, — L, by

V.o eH, Q)Y (1-2)7J (G- 0o(2)G).
By Lemma [3.1] for every 6 € (0, 00) and every (u,v,w) € H,,

. (1 _ oM (O Ili3+62vl13) cos(/\ezw)>p/2
1Q (0o (u, v, w))[|h :/ A +(1—e)p/2 dX

0

N (1 B e_S(HquJrnle%) Cos()\s)>p/2
_ 9(1—5)10/ "
0

sl+(175)p/2
= 0" Q(u, v, w)|b.

Since o is an action of H, on L,((0,00), Ly(R™)) by isometries, for
every 2,y € H, we have [Q(z) — Q)] = [Q(~y)l,, and it there-

fore follows that [|Q(0s(x)) — Q(de(y))ll, = 0" [|Q(x) — Q(y)ll, for
every z,y € H, and 6 € (0,00). Arguing exactly as in the proof of

Lemma [2.5] it follows that Q(H,) C L, is a 2%/(1=9)-doubling subset of
L,. It remains to note that by Lemma 3.1} for every z,y € H, we have

(1—¢g)l/r
51/17

dn(z, )™ <10 - W), < (1+ )dm,y)ls. N
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