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Abstract

We show that anyL1 embedding of the transportation
cost (a.k.a. Earthmover) metric on probability measures
supported on the grid{0, 1, . . . , n}2 ⊆ R2 incurs distor-
tion Ω

(√
log n

)
. We also use Fourier analytic techniques

to construct a simpleL1 embedding of this space which has
distortionO(log n).

1. Introduction

For a finite metric space(X, dX) we denote byPX the
space of all probability measures onX. The transportation
cost distance (also known as the Earthmover distance in the
computer vision/graphics literature) between two probabil-
ity measuresµ, ν ∈ PX is defined by

τ(µ, ν) = min





∑

x,y∈X

dX(x, y)π(x, y) :

∀x, y ∈ X, π(x, y) ≥ 0,

∑

z∈X

π(x, z) = µ(x),
∑

z∈X

π(z, y) = ν(y)

}
.

Observe that ifµ andν are the uniform probability distribu-
tion overk-point subsetsA ⊆ X andB ⊆ X, respectively,
then

τ(µ, ν) = min

{
1
k

∑

a∈A

dX(a, f(a)) :

f : A → B is a bijection

}
. (1)

This quantity is also known as theminimum weight match-
ing betweenA andB, corresponding to the weight func-
tion dX(·, ·) (see [34]). Thus, the Earthmover distance is a
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natural measure of similarity between images [34, 11, 10]-
the distance is the optimal way to match various features,
where the cost of such a matching corresponds to the sum
of the distances between the features that were matched.
Indeed, such metrics occur in various contexts in computer
science: Apart from being a popular distance measure in
graphics and vision [34, 11, 10, 20], they are used as LP
relaxations for classification problems such as0-extension
and metric labelling [8, 7, 2]. Transportation cost metrics
are also prevalent in several areas of analysis and PDE (see
the book [41] and the references therein).

Following extensive work on nearest neighbor search
and data stream computations forL1 metrics (see [19, 15,
14, 9, 17]), it became of great interest to obtain low distor-
tion embeddings of useful metrics intoL1 (here, and in what
follows, L1 denotes the space of all Lebesgue measurable
functionsf : [0, 1] → R, such that‖f‖1:=

∫ 1

0
|f(t)|dt <

∞). Indeed, such embeddings can be used to construct ap-
proximate nearest neighbor databases, with an approxima-
tion guarantee depending on thedistortion of the embed-
ding (we are emphasizing here only one aspect of the algo-
rithmic applications of low distortion embeddings intoL1-
they are also crucial for the study of various cut problems
in graphs, and we refer the reader to [29, 18, 16] for a dis-
cussion of these issues).

In the context of the Earthmover distance, nearest neigh-
bor search (a.k.a. similarity search in the vision literature)
is of particular importance. It was therefore asked (see,
e.g. [28]) whether the Earthmover distance embeds intoL1

with constant distortion (the best known upper bounds on
theL1 distortion were obtained in [7, 20], and will be dis-
cussed further below). In [23] the case of the Hamming
cube was settled negatively: It is shown there that any em-
bedding of the Earthmover distance on{0, 1}d (equipped
with the L1 metric) incurs distortionΩ(d). However, the
most interesting case is that of the Earthmover distance on
R2, as this corresponds to a natural similarity measure be-
tween images [10] (indeed, the case of theL1 embeddability
of planar Earthmover distance was explicitly asked in [28]).
Here we settle this problem negatively by obtaining the first



super-constant lower bound on theL1 distortion of the pla-
nar Earthmover distance. To state it we first recall some
definitions.

Given two metric spaces(X, dX) and (Y, dY ), and a
mappingf : X → Y , we denote its Lipschitz constant
by

‖f‖Lip:= sup
x,y∈X
x 6=y

dY (f(x), f(y))
dX(x, y)

.

If f is one to one then its distortion is defined as

dist(f):=‖f‖Lip · ‖f−1‖Lip

= sup
x,y∈X
x 6=y

dY (f(x), f(y))
dX(x, y)

· sup
x,y∈X
x 6=y

dX(x, y)
dY (f(x), f(y))

.

The smallest distortion with whichX can be embedded into
Y is denotedcY (X), i.e.,

cY (X):= inf {dist(f) : f : X ↪→ Y is one to one} .

When Y = Lp we use the shorter notationcY (X) =
cp(X). Thus, the parameterc2(X) is the Euclidean dis-
tortion ofX andc1(X) is theL1 distortion ofX.

Our main result bounds from below theL1 distortion
of the space of probability measures on then by n grid,
equipped with the transportation cost distance.

Theorem 1.1. c1

(
P{0,1,...,n}2 , τ

)
= Ω

(√
log n

)
.

After reducing the problem to a functional analytic ques-
tion, our proof of Theorem1.1 is a discretization of a the-
orem of Kislyakov from 1975 [25]. We attempted to make
the presentation self contained by presenting here appropri-
ate versions of the various functional anlaytic lemmas that
are used in the proof.

For readers who are more interested in the minimum
cost matching metric (1), we also prove the following lower
bound:

Theorem 1.2 (Discretization). For arbitrarily large inte-
gers n there is a familyY of disjoint n-point subsets of{
0, 1 . . . , n3

}2
, with |Y | ≤ nO(log log n), such that anyL1

embedding ofY , equipped with the minimum weight match-
ing metricτ , incurs distortion

Ω
(√

log log log n
)

= Ω
(√

log log log |Y |
)

A metric spaces(X, dX) is said to embed into squared
L2, or to be of negative type, if the metric space

(
X,
√

dX

)
is isometric to a subset ofL2. SquaredL2 metrics are im-
portant in various algorithmic applications since it is pos-
sible to efficiently solve certain optimization problems on
them using semidefinite programming (see the discussion
in [3, 24]). It turns out that planar Earthmover does not em-
bed into any squaredL2 metric:

Theorem 1.3 (Nonembeddability into squared L2).
limn→∞ c2

(
P{0,...,n}2 ,

√
τ
)

= ∞.

Motivated by the proof of Theorem1.1, we also
construct simple low-distortion embeddings of the space(
P{0,1,...,n}2 , τ

)
into L1. It is convenient to work with

probability measures on the torusZ2
n instead of the grid

{0, 1, . . . , n}2. One easily checks that{0, . . . , n}2 embeds
with constant distortion intoZ2

2n (see e.g. Lemma 6.12
in [30]). Every µ ∈ PZ2

n
can be written in the Fourier

basis as

µ =
∑

(u,v)∈Z2
n

µ̂(u, v)euv, (2)

where

∀(a, b), (u, v) ∈ Z2
n, euv(a, b):=e

2πi(au+bv)
n ,

and

∀(u, v) ∈ Z2
n, µ̂(u, v):=

1
n2

∑

(a,b)∈Z2
n

µ(a, b)euv(−a,−b).

Observe that forn = 2k + 1, k ∈ N, the decomposition (2)
can be computed in timeO

(
n2 log n

)
using the fast Fourier

transform [37]. Motivated in part by the results of [32] (see
also [5, 33]), we define

Aµ =
∑

(u,v)∈Z2
n\{(0,0)}

e
2πiu

n − 1∣∣e 2πiu
n − 1

∣∣2 +
∣∣e 2πiv

n − 1
∣∣2

·µ̂(u, v) · euv, (3)

and

Bµ =
∑

(u,v)∈Z2
n\{(0,0)}

e
2πiv

n − 1∣∣e 2πiu
n − 1

∣∣2 +
∣∣e 2πiv

n − 1
∣∣2

·µ̂(u, v) · euv. (4)

Theorem 1.4.The mappingµ 7→ (Aµ,Bµ) from
(
PZ2

n
, τ

)

to L1

(
Z2

n

) ⊕ L1

(
Z2

n

)
is bi-Lipschitz, with distortion

O(log n).

TheO(log n) distortion in Theorem1.4matches the best
known distortion guarantee proved in [20, 7]. But, our em-
bedding has various new features. First of all, it is alinear
mapping into a low dimensionalL1 space, which is based
on the computation of the Fourier transform. It is thus very
fast to compute, and is versatile in the sense that it might
behave better on images whose Fourier transform is sparse
(we do not study this issue here). Thus there is scope to
apply the embedding on certain subsets of the frequencies,
and this might improve the performance in practice. This is
an interesting “applied” question which should be investi-
gated further. For lack of space, the proof of Theorem1.4
will be deferred to the full version of this paper.



2. Preliminaries and notation

For the necessary background on measure theory we re-
fer to the book [38], however, in the setting of the present
paper, our main results will deal with finitely supported
measures, in which case no background and measurabilty
assumptions are necessary. We also refer to the book [41]
for background on the theory of optimal transportation of
measures. Let(X, dX) be a metric space. We denote by
MX the space of all Borel measures onX with bounded
total variation, and byPX ⊆ MX the set of all Borelprob-
ability measures onX. We also letM +

X ⊆ MX be the
space ofnon-negativemeasures onX with finite total mass,
and we denote byM 0

X ⊆ MX the space of all measures
µ ∈ MX with µ(X) = 0. Given a measureµ ∈ MX , we
can decompose it in a unique way asµ = µ+ − µ−, where
µ+, µ− ∈ M +

X are disjointly supported. Ifµ, ν ∈ M +
X

have the same total mass, i.e.µ(X) = ν(X) < ∞, then
we letΠ(µ, ν) be the space of allcouplingsof µ andν, i.e.
all non-negative Borel measuresπ on X ×X such that for
every measurable boundedf : X → R,

∫

X×X

f(x)dπ(x, y) =
∫

X

f(x)dµ(x),

and ∫

X×X

f(y)dπ(x, y) =
∫

X

f(y)dν(y).

Observe that in the case of finitely supported measures, this
condition translates to the standard formulation, in which
we require that the marginals ofπ areµ andν, i.e.

∀x, y ∈ X,
∑

z∈X

π(x, z) = µ(x) ∧
∑

z∈X

π(z, y) = ν(y).

The transportation cost distancebetweenµ and ν, de-
noted here byτ(µ, ν) = τ(X,dX)(µ.ν) (and also referred
to in the literature as the Wasserstein1 distance, Monge-
Kantorovich distance, or the Earthmover distance), is

τ(µ, ν)

:= inf
{∫

X×X

dX(x, y) dπ(x, y) : π ∈ Π(µ, ν)
}

. (5)

For µ ∈ M 0
X , µ+(X) = µ−(X), so we may write

‖µ‖τ :=τ(µ+, µ−). This is easily seen to be a norm on the
vector spaceM 0

X,τ :=
{
µ ∈ M 0

X : ‖µ‖τ < ∞}
.

Fix somex0 ∈ X, and letLip0(X) = Lipx0
(X) be

the linear space of all Lipschitz mappingsf : X → R
with f(x0) = 0, equipped with the norm‖ · ‖Lip (i.e.
the norm of a function equals its Lipschitz constant). Any
µ ∈ M 0

X,τ can be thought of as a bounded linear functional
on Lip0(X), given byf 7→ ∫

X
fdµ. The famousKan-

torovich duality theorem(see Theorem 1.14 in [41]) implies

that Lip0(X)∗ = M 0
X,τ , in the sense that every bounded

linear functional onLip0(X) is obtained in this way, and
for everyµ ∈ M 0

X,τ ,

‖µ‖τ = ‖µ‖Lip0(X)∗

:= sup
{∫

X

fdµ : f ∈ Lip0(X), ‖f‖Lip ≤ 1
}

.

(We note that this identity amounts to duality of linear pro-
gramming.)

3. Proof of Theorem1.1

Fix an integern ≥ 2 and letX = {0, 1, . . . , n − 1}2,
equipped with the standard Euclidean metric. In what fol-
lows, for concreteness,Lip0:=Lip0(X) is defined using the
base pointx0 = (0, 0). Also, for ease of notation we denote
M = M 0

X,τ . Observe thatLip0 andM are vector spaces of
dimensionn2 − 1, and by Kantorovich duality,Lip∗0 = M
andM ∗ = Lip0.

Assume thatF : PX → L1 is a bi-Lipschitz embed-
ding, satisfying for all two probability measuresµ, ν ∈
PX ,

τ(µ, ν) ≤ ‖F (µ)− F (ν)‖1 ≤ L · τ(µ, ν). (6)

Our goal is to boundL from below. We begin by reduc-
ing the problem to the case oflinear mappings. Recall
that given two normed spaces(Z, ‖ · ‖Z) and(W, ‖ · ‖W ),
the norm of a linear mappingT : Z → W is defined
as ‖T‖ = supz∈Z\{0}

‖Tz‖W

‖z‖Z
(observe that in this case

‖T‖ = ‖T‖Lip).

Lemma 3.1 (Reduction to a linear embedding ofM into
`N
1 ). Under the assumption of an existence of an embedding

F : PX → L1 satisfying(6), there exists an integerN , and
an invertible linear operatorT : M → `N

1 , with‖T‖ ≤ 2L
and‖T (µ)‖1 ≥ ‖µ‖τ for all µ ∈ M (the factor2 can be
replaced by1 + ε for everyε > 0, but this is irrelevant for
us here).

Proof. By translation we may assume thatF maps the
uniform measure onX to 0. For µ ∈ M denote
‖µ‖∞:=maxx∈X |µ(x)|. Observe that it is always the case
that‖µ‖∞ ≤ ‖µ‖τ . Indeed, ifπ ∈ Π(µ+, µ−) then

∫

X×X

‖x− y‖2dπ(x, y) ≥
∫

X×X

dπ(x, y)

= µ+(X) = µ−(X) ≥ ‖µ‖∞.

LetBM denote the unit ball ofM . Define forµ ∈ BM a
probability measureψ(µ) ∈ P(X) by ψ(µ)(x):=µ(x)+1

n2 .

Then everyµ, ν ∈ M satisfy‖µ − ν‖τ = ‖ψ(µ)−ψ(ν)‖τ

n2 .



The mappingh:=n2 ·F ◦ψ : BM → L1 satisfiesh(0) = 0,
‖h‖Lip ≤ L, and‖h(µ)−h(ν)‖1 ≥ ‖µ−ν‖τ . This implies
that there exists a map̃h : M → L1 satisfying the same
inequalities. We shall present two arguments establishing
this fact: The first is a soft non-constructive proof, using the
notion of ultraproducts, and the second argument is more
elementary, but does not preserve the Lipschitz constant.

Let U be a free ultrafilter onN, and denote by(L1)U

the corresponding ultrapower ofL1 (see [12] for the nec-
essary background on ultrapowers of Banach spaces. In
particular, it is shown there that(L1)U is isometric to an
L1(σ) space, for some measureσ). Define forµ ∈ M ,
h̃(µ) = (j · h(µ/j))∞j=1 /U , where we set, say,h(ν) = 0
for ν ∈ M \BM . Then, by standard arguments,‖h̃‖Lip ≤
L and‖h̃−1‖Lip ≤ 1. Moreover,h̃(M ) spans a separable
subspace of(L1)U , and thus we may assume without loss
of generality that̃h takes values inL1.

An alternative proof (for those of us who don’t mind
losing a constant factor), proceeds as follows. For every
f ∈ L1 let χ(f) : [0, 1] × R → {−1, 0, 1} be the function
given by

χ(f)(s, t) = sign(f(s)) · 1[
0,|f(s)|

](t)

=





1 f(s) > 0, 0 ≤ t ≤ f(s),
−1 f(s) < 0, 0 ≤ t ≤ −f(s),
0 otherwise.

Then‖f−g‖1 = ‖χ(f)−χ(g)‖L1([0,1]×R) for everyf, g ∈
L1 (We note here that the spaceL1([0, 1]× R) is isometric
to L1.) Defineh̃ : M → L1([0, 1]×R) by settingh̃(µ) =
‖µ‖τ · χ ◦ h(µ/‖µ‖τ ) for µ ∈ M \ {0}, and h̃(0) = 0.
Since for everyf ∈ L1, χ(f) takes values in{−1, 0, 1}, we
have the following pointwise identity for everyµ, ν ∈ M
with ‖µ||τ ≥ ‖ν‖τ :

∣∣∣h̃(µ)− h̃(ν)
∣∣∣ = ‖ν‖τ ·

∣∣∣∣χ ◦ h

(
µ

‖µ‖τ

)
− χ ◦ h

(
ν

‖ν‖τ

)∣∣∣∣

+ (‖µ‖τ − ‖ν‖τ ) ·
∣∣∣∣χ ◦ h

(
µ

‖µ‖τ

)∣∣∣∣ .

Thus∥∥∥h̃(µ)− h̃(ν)
∥∥∥

L1([0,1]×R)

= ‖ν‖τ ·
∥∥∥∥h

(
µ

‖µ‖τ

)
− h

(
ν

‖ν‖τ

)∥∥∥∥
1

+(‖µ‖τ − ‖ν‖τ ) ·
∥∥∥∥h

(
µ

‖µ‖τ

)∥∥∥∥
1

(7)

≥ ‖ν‖τ ·
∥∥∥∥

µ

‖µ‖τ
− ν

‖ν‖τ

∥∥∥∥
τ

+ ‖µ‖τ − ‖ν‖τ

≥ ‖ν − µ‖τ −
∥∥∥∥µ− ‖ν‖τ

‖µ‖τ
µ

∥∥∥∥
τ

+ ‖µ‖τ − ‖ν‖τ

= ‖ν − µ‖τ .

It also follows from the identity (7) that

∥∥∥h̃(µ)− h̃(ν)
∥∥∥

L1([0,1]×R)

≤ L‖ν‖τ ·
∥∥∥∥

µ

‖µ‖τ
− ν

‖ν‖τ

∥∥∥∥
τ

+ L‖µ− ν‖τ

≤ L‖µ− ν‖τ + L‖ν‖τ‖µ‖τ ·
∣∣∣∣

1
‖µ‖τ

− 1
‖ν‖τ

∣∣∣∣
+L‖µ− ν‖τ

≤ 3L‖µ− ν‖τ .

We are now in position to use a Theorem of Ribe [36]
(see also [13], and Corollary 7.10 in [4], for softer proofs),
which implies that there is an into linear isomorphismS :
M → L∗∗1 satisfying‖S‖ ≤ L and‖S−1‖ ≤ 1. Since
M is finite dimensional, by the principle of local reflex-
ivity [ 26] (alternatively by Kakutani’s representation theo-
rem [21, 27]), and a simple approximation argument, we
get that there exists an integerN and an into linear isomor-
phismT : M → `N

1 satisfying‖T‖ ≤ 2L and‖T−1‖ ≤ 1
(the value ofN is irrelevant for us here, and indeed it is
possible to conclude the proof without passing to a finite
dimensionalL1 space, but this slightly simplifies some of
the ensuing arguments. For completeness we note here
that using a theorem of Talagrand [39] we can ensure that
N = O(n2 log n)).

From now on letT : M → `N
1 be the linear operator

guaranteed by Lemma3.1. SinceT is an isomorphism, the
adjoint operatorT ∗ : `N

∞ → M ∗ = Lip0 is a quotient
mapping, i.e.‖T ∗‖ ≤ 2L and the image of the unit ball of
`N
∞ underT ∗ contains the unit ball ofLip0.

The rest of the proof follows Kislyakov’s [25] and is a
discretization of his argument. The idea is to composeT ∗

with a mapF which is the imaginary part of the discrete
two dimensional Fourier transform (see the exact definition
below), seen as a map fromLip0 to `2(X), and to prove
two properties of the composed map: Using the fact that
‖T ∗‖ ≤ 2L we shall show thatF ◦ T ∗ is order bounded
with good bound, that is,

F
(
T ∗(B`N∞)

) ⊆ {y ∈ `2(X) : |y| ≤ x},

for somex ∈ `2(X) such that‖x‖2 ≤ 4Ln. Then, using
the quotient property ofT ∗, we find a family of functions
{φi ∈ B`N∞}i∈I such that ifF (T ∗(φi)) ≤ x for all i ∈ I

then‖x‖2 ≥ cn
√

log n, for some universalc > 0.

We now define two more auxiliary linear operators. The
first is the formal identityId : Lip0 → W , whereW is the
space of all functionsf : X → R with f(0) = 0, equipped



with the (discrete Sobolev) norm

‖f‖W :=
n−1∑

i=0

n−2∑

j=0

|f(i, j + 1)− f(i, j)|

+
n−1∑

j=0

n−2∑

i=0

|f(i + 1, j)− f(i, j)|

+n

n−2∑

i=0

|f(i + 1, 0)− f(i, 0)|

+n

n−2∑

j=0

|f(0, j + 1)− f(0, j)|.

The second operator is also a formal identity (discrete
Sobolev embedding)S : W → `2(X), where the Euclidean
norm on`2(X) is taken with respect to the counting mea-
sure onX. The final operator that we will use is the imagi-
nary part of the Fourier operator, already referred to above,
which we denote byF : `2(X) → `2(X). It is defined for
f : X → R by

F (f)(u, v):==
(

1
n2

∑

(k,`)∈X

f(k, `)e
2πi(uk+v`)

n

)

=
1
n2

∑

(k,`)∈X

f(k, `) sin
(

2π(uk + v`)
n

)
.

The following lemma summarizes known estimates on the
norms of these operators.

Lemma 3.2 (Operator norm bounds). The following op-
erator norm bounds hold true:
• ‖Id‖ ≤ 4n(n− 1). • ‖S‖ ≤ 1

2 . • ‖F‖ ≤ 1
n .

Proof. The first statement means that for everyf : X →
R with f(0) = 0, ‖f‖W ≤ 4n(n − 1)‖f‖Lip, which is
obvious from the definitions. The second assertion is that
‖f‖2 ≤ 1

2‖f‖W . This is a discrete version of Sobolev’s
inequality [33] (with non-optimal constant), which can be
proved as follows. First of all, sincef(0) = 0, for every
(u, v) ∈ X,

|f(u, v)| =

∣∣∣∣∣
u−1∑

k=0

[f(k + 1, v)− f(k, v)]

+
v−1∑

`=0

[f(0, ` + 1)− f(0, `)]

∣∣∣∣∣

≤
n−2∑

k=0

|f(k + 1, v)− f(k, v)|

+
n−2∑

`=0

|f(0, ` + 1)− f(0, `)|

:= A(v). (8)

Analogously,

|f(u, v)| ≤
n−2∑

`=0

|f(u, ` + 1)− f(u, `)|

+
n−2∑

k=0

|f(k + 1, 0)− f(k, 0)|

:= B(u). (9)

Multiplying (8) and (9), and summing overX, we see that

‖f‖22 ≤
∑

(u,v)∈X

A(v)B(u)

=

(
n−1∑
v=0

A(v)

)
·
(

n−1∑
u=0

B(u)

)

≤ 1
4

(
n−1∑
v=0

A(v) +
n−1∑
u=0

B(u)

)2

=
1
4
‖f‖2W .

The final assertion follows from the fact that the system

of functions
{

(k, `) 7→ e
2πi(uk+v`)

n

}
(u,v)∈X

are orthogonal

in `C2 (X) (the space of complex valued functions onX),
and have norms bounded byn.

We now recall some facts related to absolutely summing
operators on Banach spaces (we refer the interested reader
to [40, 42] for more information on this topic). Given
two Banach spacesY andZ, the π1 norm of an operator
A : Y → Z, denotedπ1(A), is defined to be the small-
est constantK > 0 such that for everym ∈ N and ev-
ery y1, . . . , ym ∈ Y there exists a norm1 linear functional
y∗ ∈ Y ∗ satisfying

m∑

j=1

‖Ayj‖Z ≤ K

m∑

j=1

|y∗(yj)|. (10)

This defines anideal normin the sense that it is a norm, and
for every two operatorsP : W → Y andQ : Z → V we
haveπ1(QAP ) ≤ ‖Q‖ · π1(A) · ‖P‖. Observe that it is
always the case thatπ1(A) ≥ ‖A‖.

Lemma 3.3. Using the above notation we have that
π1(Id) ≤ 4n(n− 1). Therefore, Lemma3.2 implies that

π1(F ◦ S ◦ Id ◦ T ∗) ≤ 4nL.

Proof. Fix m functionsf1, . . . , fm : X → R such that



f1(0) = · · · = fm(0) = 0. Then

m∑

j=1

‖fj‖W =
n−1∑
s=1

n−2∑
t=0

m∑

j=1

(|fj(s, t + 1)− fj(s, t)|

+|fj(t + 1, s)− fj(t, s)|
)

+(n + 1)
n−2∑
t=0

m∑

j=1

(|fj(0, t + 1)− fj(0, t)|

+|fj(t + 1, 0)− fj(t, 0)|)

≤ 4n(n− 1)

·max



 max

0≤s≤n−1
0≤t≤n−2

m∑

j=1

|fj(s, t + 1)− fj(s, t)|,

max
0≤s≤n−1
0≤t≤n−2

m∑

j=1

|fj(t + 1, s)− fj(t, s)|


 .

Assume without loss of generality that the maximum above
equals

∑m
j=1 |fj(s0, t0 + 1) − fj(s0, t0)|, for some0 ≤

s0 ≤ n− 1 and0 ≤ t0 ≤ n− 2. Consider the measureµ =
δ(s0,t0+1)− δ(s0,t0) ∈ M = Lip∗0. One checks that‖µ‖τ =
1, and

∑m
j=1 |fj(s0, t0 + 1)− fj(s0, t0)| =

∑m
j=1 |µ(fj)|,

implying the required result.

The fundamental property of theπ1 norm is the Pietsch
Factorization Theorem (see [40]), a special (particularly
easy) case of which is the following lemma. We present
a proof for the sake of completeness.

Lemma 3.4 (Pietsch factorization). Let Y be a Banach
space, and fix a linear operatorA : `N

∞ → Y . Then there
exists a probability measureσ on {1, . . . , N} and a linear
operatorR : L1(σ) → Y such thatA = R ◦ I, whereI is
the formal identity from̀N

∞ to L1(σ), and‖R‖ = π1(A).

Proof. Recall that A : `N
∞ → Y satisfies for all

x1, . . . , xm ∈ `N
∞,

m∑

j=1

‖Axj‖ ≤ π1(A) · sup
x∗∈(`N

∞)∗
‖x∗‖=1

m∑

j=1

|x∗(xj)|

= π1(A) · max
1≤k≤N

m∑

j=1

|xj(k)|, (11)

where the last equality follows from the fact that the eval-
uation functionalsx 7→ x(k) are the extreme points of the
unit ball of `N

1 =
(
`N
∞

)∗
.

Denoting bye1, . . . , eN the standard basis ofRN we de-
duce from (11) thatπ1(A) ≥ ∑N

j=1 ‖Aej‖. Define a prob-

ability measureσ on {1, . . . , N} by σ(k) = ‖Aek‖∑N
j=1 ‖Aej‖ .

Then for everyx ∈ `N
∞ we see that

‖Ax‖ =

∥∥∥∥∥
N∑

k=1

x(k)Aek

∥∥∥∥∥

≤
N∑

k=1

|x(k)| · ‖Aek‖

=

(
N∑

j=1

‖Aej‖
) ∫

{1,...,N}
|x(k)|dσ(k)

≤ π1(A)
∫

{1,...,N}
|x(k)|dσ(k).

DefiningRx = Ax, this implies the required result.

From now on letR andσ be the operator and probability
measure corresponding toA = F◦S◦Id◦T ∗ in Lemma3.4.
ThusR◦I = F◦S◦Id◦T ∗ and‖R‖ ≤ 4nL. Schematically,
we have the following commuting diagram:

ℓ
N
∞

T ∗
- Lip0

Id
- W

S
- ℓ2(X)

F
- ℓ2(X)

L1(σ)

R
-

I
-

1

We need only one more simple result from classical Ba-
nach space theory. This is a special case of a more general
theorem, but we shall prove here only what is needed to
conclude the proof of Theorem1.1.

Lemma 3.5. Let R : L1(σ) → `2 be a linear operator.
Fix f : {0, . . . , N} → [0,∞). Then there isx ∈ `2 with
non-negative coordinates such that

R ({g : {0, . . . , N} → R : ∀j, |g(j)| ≤ f(j)})
⊆ {y ∈ `2 : ∀j, |yj | ≤ xj},

and‖x‖2 ≤ ‖R‖ · ‖f‖L1(σ).

Proof. R is given by a matrix(Rij : i = 1, . . . , N, j ∈
N). In other words, for everyj, (Rf)j =

∑N
i=1 Rijf(i).

Observe that using this notation,

‖R‖ = max
1≤i≤N

(
1

σ(i)2

∞∑

j=1

R2
ij

)1/2

. (12)

Fix g ∈ L1(σ) such that for alli ∈ {1, . . . , N}, |g(i)| ≤
f(i). Then for allj,

|(Rg)j | ≤
N∑

i=1

|Rij |f(i):=xj .



Now,

‖x‖2 =



∞∑

j=1

(
N∑

i=1

|Rij |f(i)

)2



1/2

≤
N∑

i=1

( ∞∑

j=1

|Rij |2f(i)2
)1/2

=
n∑

i=1

σ(i)f(i)

(
1

σ(i)2

∞∑

j=1

R2
ij

)1/2

≤ ‖R‖ · ‖f‖L1(σ),

where we have used (12).

We are now in position to conclude the proof of Theo-
rem1.1.

Proof of Theorem1.1. For (u, v) ∈ {1, . . . , n− 1}2 define
ϕu,v : X → R by

ϕu,v(k, `):=
1

u + v
· sin

(
2π(uk + v`)

n

)
.

Thenϕu,v(0) = 0 and one computes that‖ϕu,v‖Lip < 4π
n .

By the fact thatT ∗ maps the unit ball of̀ N
∞ onto the

unit ball of Lip0, it follows that there isφu,v ∈ `N
∞ with

‖φu,v‖∞ ≤ 4π
n andT ∗φu,v = ϕu,v. Now, the functions

|I(φu,v)| ∈ L1(σ) are point-wise bounded by the constant
4π
n , so by Lemma3.5 there existsx ∈ `2(X) of norm at

most 4π
n ‖R‖ ≤ 16πL such that|R(I(φu,v))| is bounded

pointwise byx.

Note that

R ◦ I(φu,v)(u, v) = F ◦ S ◦ Id ◦ T ∗(φu,v)(u, v)
= F (ϕu,v)(u, v)

=
1
n2

∑

(k,`)∈X

1
u + v

· sin2

(
2π(uk + v`)

n

)

=
1

n2(u + v)

n−1∑

k=0

n−1∑

`=0

(
1
2
− 1

4
· e2πi· 2uk

n · e2πi· 2v`
n

−1
4
· e−2πi· 2uk

n · e−2πi· 2v`
n

)

=
{ 1

2(u+v) (u, v) 6= (
n
2 , n

2

)
,

0 (u, v) =
(

n
2 , n

2

)
.

But

(16πL)2 ≥ ‖x‖22

≥
n−1∑

u,v=1

x2
u,v

≥
n−1∑

u,v=1

[
R ◦ I(φu,v)(u, v)

]2

≥ 1
8

n−1∑
u,v=1

1
(u + v)2

≥ log n

16
,

where the last bound follows from comparison with the
appropriate integrals. The proof of Theorem1.1 is com-
plete.

4. Discretization and minimum weight match-
ing

In this section we deduce Theorem1.2 from Theo-
rem 1.1. The main tool is the following theorem of Bour-
gain [6], which gives a quantitative version of Ribe’s theo-
rem [36].

Theorem 4.1 (Bourgain’s quantitative version of Ribe’s
theorem [6]). There exists a universal constantC with
the following property. LetY and Z be Banach spaces,
dim(Y ) = d. Assume thatY is an ε-net in the unit
ball of Y , f : Y → Z satisfiesdist(f) ≤ D, and that
log log 1

ε ≥ Cd log D. Then there exists an invertible lin-
ear operatorT : Y → Z satisfying‖T‖ · ‖T−1‖ ≤ C ·D.

Proof of Theorem1.2. Observe that for everyµ ∈ M , the
measure 1

µ+(X) · (µ+ ⊗ µ−) is in Π(µ+, µ−). Thus

‖µ‖τ ≤ 1
µ+(X)

∫

X×X

‖x− y‖2dµ+(x)dµ−(y)

≤
√

2 · (n− 1) · µ+(X)
≤ 2n · |supp(µ+)| · ‖µ‖∞
≤ 2n3‖µ‖∞.

On the other hand, as we have seen in the proof of
Lemma3.1, for everyµ ∈ M , ‖µ‖∞ ≤ ‖µ‖τ . It follows
from these consideration, and Theorems1.1 and4.1, that

for every integerN ≥ eeC′n2 log log n

, the set of probability
measuresY ⊆ PX consisting of measuresµ ∈ PX such
that for allx ∈ X, µ(x) = k/N for somek ∈ {0, . . . , N},
satisfiesc1(Y , τ) = Ω

(√
log n

)
. We pass to a family of

subsets as follows. LetM be an integer which will be
determined later. For everyµ ∈ Y we assign a subset



Sµ ⊆ {0, . . . , nM}2 as follows. For every(u, v) ∈ X =
{0, . . . , n− 1}2, if µ(u, v) = k/N , wherek ∈ {0, . . . , N},
thenSµ will contain arbitraryk distinct points from the set

(uM, vM) +
{

0, . . . ,
⌈√

N
⌉}2

. ProvidedM ≥ 4
√

N , the

sets{Sµ}µ∈Y thus obtained are disjointN point subsets
of {0, . . . , nM}2, and it is straightforward to check that
the minimum weight matching metric on{Sµ}µ∈Y is bi-
Lipschitz equivalent to(Y , τ) with constant distortion.

5. Uniform and coarse nonembeddability into
Hilbert space

In this section we prove Theorem1.3. We shall prove,
in fact, that the spaceM[0,1]2,τ does not embed uniformly
or coarsely intoL2. We first recall the defintions of these
important notions (see [4, 30] and the references therein for
background on these concepts). Let(X, dX) and (Y, dY )
be metric spaces. Forf : X → Y andt > 0 we define

Ωf (t) = sup{dY (f(x), f(y)); dX(x, y) ≤ t},

and

ωf (t) = inf{dY (f(x), f(y)); dN (x, y) ≥ t}.

ClearlyΩf andωf are non-decreasing, and for everyx, y ∈
X,

ωf (dX(x, y)) ≤ dY (f(x), f(y)) ≤ Ωf (dX(x, y)) .

With these definitions,f is uniformly continuous if
limt→0 Ωf (t) = 0, andf is said to be a uniform embedding
if f is invertible and bothf andf−1 are uniformly continu-
ous. Also,f is said to be a coarse embedding ifΩf (t) < ∞
for all t > 0 andlimt→∞ ωf (t) = ∞.

In what follows we will use the following stan-
dard notation: Given a sequence of Banach spaces{
(Zj , ‖ · ‖Zj )

}∞
j=1

the Banach space
(⊕∞

j=1 Zj

)
1

is the

space of all sequencesz = (zj)∞j=1 ∈
∏∞

j=1 Zj such that
‖z‖:=∑∞

j=1 ‖zj‖Zj < ∞. If for every j ∈ N, Zj = Z1,

we write`1(Z1) =
(⊕∞

j=1 Zj

)
1
.

Theorem 5.1. The spaces
{

M 0
{0,...,n}2,τ

}∞
n=1

do not ad-

mit a uniform or coarse embedding intoL2 with moduli
uniformly bounded inn, i.e., there do not exist increas-
ing functionsω, Ω : [0,∞) → [0,∞) which either sat-
isfy limt→0 ω(t) = limt→0 Ω(t) = 0, or limt→∞ ω(t) =
∞, and mappingsfn : M 0

{0,...,n}2 → L2, such that
ω(‖µ − ν‖τ ) ≤ ‖fn(µ) − fn(ν)‖2 ≤ Ω(‖µ − ν‖τ ) for
all µ, ν ∈ M 0

{0,...,n}2 and alln.

Proof. If this is not the case then by passing to a limit along
an ultrafilter we easily deduce thatM 0

[0,1]2,τ uniformly or
coarsely embeds in an ultraproduct of Hilbert spaces and
thus inL2 (see [12, 13]). By a theorem of Aharoni, Maurey
and Mityagin [1] in the case of uniform embeddings, and
a result of Randrianarivony [35] in the case of coarse em-
beddings, this implies thatM 0

[0,1]2 is linearly isomorphic to
a subspace ofL0. By a theorem of Nikǐsin [31] it follows
that M 0

[0,1]2 is isomorphic to a subspace ofL1−ε for any
ε ∈ (0, 1). We recall that it is an open problem posed by
Kwapien (see the discussion in [22, 4]) whether a Banach
space which linearly embed intoL0 is linearly isomorphic
to a subspace ofL1. If this were the case, we would have
finished by Theorem1.1. Since the solution of Kwapien’s
problem is unknown, we proceed as follows.

Let {Sj}∞j=1 be a sequence of disjoint squares in[0, 1]2

with

d(Sj , Sk) = min
a∈Sj , b∈Sk

‖a− b‖2
> max {diamSj ,diamSk} . (13)

Consider the linear subspaceY of M 0
[0,1]2 consisting of all

measuresµ satisfyingsupp(µ) ⊆ ⋃∞
j=1 Sj andµ(Sj) = 0

for all j. It is intuitively clear that in the computation of
‖µ‖τ for µ ∈ Y the best transportation leaves each of the
Sj invariant; i.e., it is enough to take the infimum in (5)
only over measuresπ ∈ Π(µ, ν) which are supported on⋃∞

j=1(Sj × Sj). This is proved formally as follows: Fix
µ ∈ Y and writeµ =

∑∞
j=1 µj , wheresupp(µj) ⊆ Sj and

µj(Sj) = 0 for all j ∈ N. We claim that

‖µ‖[0,1]2,τ =
∞∑

j=1

‖µj‖Sj ,τ . (14)

If πj ∈ Π(µ+
j , µ−j ) thenπ:=

∑∞
j=1 πj ∈ Π(µ+, µ−). Thus

‖µ‖[0,1]2,τ ≤ ∑∞
j=1 ‖µj‖Sj ,τ . To prove the reverse in-

equality takeπ ∈ Π(µ+, µ−). For everyj = 1, 2, . . .
define a measureσj on Sj as follows: ForA ⊆ Sj set

σj(A):=π
(
A×⋃

k 6=j Sk

)
. Thus, in particular, by our as-

sumption (13) for everyy ∈ Sj ,

∫

Sj

‖x− y‖2dσj(x) =
∫

Sj×
⋃

k 6=j Sk

‖x− y‖2dπ(x, z)

≤
∫

Sj×
⋃

k 6=j Sk

‖x− z‖2dπ(x, z). (15)



Writing

π̃:=π · 1⋃∞
j=1(Sj×Sj) +

∞∑

j=1

1
σj(Sj)

· σj ⊗ σj

= π ·1⋃∞
j=1(Sj×Sj) +

∞∑

j=1

1

π
(
Sj ×

⋃
k 6=j Sk

) ·σj ⊗σj ,

it follows from our definitions that̃π ∈ Π(µ+, µ−) and
π̃ is supported on

⋃∞
j=1(Sj × Sj). Moreover, for eachj,

π̃j :=π̃|Sj
∈ Π(µ+

j , µ−j ), so that

∞∑

j=1

‖µj‖Sj ,τ ≤
∞∑

j=1

∫

Sj×Sj

‖x− y‖2dπ̃j(x, y)

=
∫

⋃∞
j=1(Sj×Sj)

‖x− y‖2dπ(x, y)

+
∞∑

j=1

1

π
(
Sj ×

⋃
k 6=j Sk

)

·
∫

Sj×Sj

‖x− y‖2dσj(x)dσj(y)

(15)
≤

∫
⋃∞

j=1(Sj×Sj)

‖x− y‖2dπ(x, y)

+
∞∑

j=1

∫

Sj×
⋃

k 6=j Sk

‖x− z‖2dπ(x, z)

=
∫

(⋃∞
j=1 Sj)×(⋃∞

j=1 Sj)
‖x− y‖2dπ(x, y).

This concludes the proof of (14). It follows thatY is iso-
metric to

(⊕∞
n=1 M 0

Sn,τ

)
1
, which in turn is isometric to

`1

(
M 0

[0,1]2,τ

)
. Now, Kalton proved in [22] that if for some

Banach spaceX, `1(X) is isomorphic to a subspace ofL0,
thenX is isomorphic to a subspace ofL1 and we finish by
Theorem1.1.

Proof of Theorem1.3. Assume for the sake of contradic-
tion that there existsC < ∞ such that for alln ∈ N,
c2

(
P{0,...,n}2 ,

√
τ
)

< C. By the proof of Lemma3.1
we know that the unit ball ofM{0,...,n}2,τ is isometric to
a subset of(P{0,...,n}2 , τ). Thus by our assumption there
exist mappingsfn : M{0,...,n}2 → L2 such that for every
µ, ν ∈ M{0,...,n}2 with ‖µ‖τ , ‖ν‖τ ≤ 1,

√
‖µ− ν‖τ ≤ ‖fn(µ)− fn(ν)‖2 ≤ C ·

√
‖µ− ν‖τ . (16)

Let U be a free ultrafilter onN. Definef̃n : M{0,...,n}2 →
(L2)U by f̃n(µ) =

(√
j · fn(µ/j)

)∞
j=1

/U . Inequal-
ities (16) imply that all µ, ν ∈ M{0,...,n}2 satisfy√
‖µ− ν‖τ ≤ ‖f̃n(µ) − f̃n(ν)‖(L2)U

≤ C ·
√
‖µ− ν‖τ .

Since the ultrapower(L2)U is isometric to a Hilbert
space (see [12]), we arrive at a contradiction with Theo-
rem5.1.

Remark 5.1. We believe that Theorem1.3 can be made
quantitative, i.e. one can give explicit quantitative estimates
on the rate with whichc2

(
P{0,...,n}2 ,

√
τ
)

tends to infin-
ity. This would involve obtaining quantitative versions of
the proofs in [1, 22, 35], which seems easy but somewhat
tedious. We did not attempt to obtain such bounds.

Remark 5.2. We do not know whether
(
P[0,1]2 , τ

)
admits

a uniform embedding into Hilbert space. The proof above
actually gives that for allα ∈ (0, 1],

(
P[0,1]2,τ , τα

)
does

not embed bi-Lipschitzly into Hilbert space. But, our proof
exploits the homogeneity of the functiont 7→ tα in an es-
sential way, so it does not apply to the case of more general
moduli.
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