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Abstract

We show that any.; embedding of the transportation
cost (a.k.a. Earthmover) metric on probability measures
supported on the griqo0, 1,...,n}? C R? incurs distor-
tion Q (y/Iogn). We also use Fourier analytic techniques
to construct a simplé.; embedding of this space which has
distortionO(log n).

1. Introduction

For a finite metric spacéX, dx ) we denote by?x the
space of all probability measures éh The transportation
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natural measure of similarity between imaga4, [11, 10]-
the distance is the optimal way to match various features,
where the cost of such a matching corresponds to the sum
of the distances between the features that were matched.
Indeed, such metrics occur in various contexts in computer
science: Apart from being a popular distance measure in
graphics and vision34, [11, 110, [2Q], they are used as LP
relaxations for classification problems suchOasxtension
and metric labelling8, (7, 2]. Transportation cost metrics
are also prevalent in several areas of analysis and PDE (see
the book 1] and the references therein).

Following extensive work on nearest neighbor search
and data stream computations for metrics (seelS, 15,
14,19,117)), it became of great interest to obtain low distor-

cost distance (also known as the Earthmover distance in thdion embeddings of useful metrics infq (here, and in what

computer vision/graphics literature) between two probabil-

ity measures:, v € Px is defined by

= min

S dx(a,y)n(ay)

r,yeX
Vr,y € X, n(x,y) >0,

> wlw,z) = px), Y w(zy) =vy)

zeX zeX

7(k,v)

} |

Observe that if: andv are the uniform probability distribu-
tion overk-point subsetst C X andB C X, respectively,

then
min {

This quantity is also known as tmeinimum weight match-
ing betweenA and B, corresponding to the weight func-
tiondx(-,-) (see B4]). Thus, the Earthmover distance is a

(,0) £ 3" dxla, f(0)

acA

f:A— Bisa bijection} . (@

follows, L, denotes the space of all Lebesgue measurable
functionsf : [0,1] — R, such that|f]|::= fol [f(t)|dt <

o). Indeed, such embeddings can be used to construct ap-
proximate nearest neighbor databases, with an approxima-
tion guarantee depending on thstortion of the embed-
ding (we are emphasizing here only one aspect of the algo-
rithmic applications of low distortion embeddings intg-

they are also crucial for the study of various cut problems
in graphs, and we refer the reader #8,[18, [16] for a dis-
cussion of these issues).

In the context of the Earthmover distance, nearest neigh-
bor search (a.k.a. similarity search in the vision literature)
is of particular importance. It was therefore asked (see,
e.g. 28]) whether the Earthmover distance embeds ibo
with constant distortion (the best known upper bounds on
the L, distortion were obtained ir/[[20], and will be dis-
cussed further below). In2B] the case of the Hamming
cube was settled negatively: It is shown there that any em-
bedding of the Earthmover distance 6o, 1}¢ (equipped
with the Z; metric) incurs distortio2(d). However, the
most interesting case is that of the Earthmover distance on
R?, as this corresponds to a natural similarity measure be-
tween imagesllQ] (indeed, the case of the, embeddability
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Here we settle this problem negatively by obtaining the first



super-constant lower bound on the distortion of the pla-  Theorem 1.3 (Nonembeddability into squared Ls).
nar Earthmover distance. To state it we first recall somelim,, .o ¢z (Pyo,....n}2, V/T) = o0.
definitions.

Given two metric spacetX,dx) and (Y,dy), and a

i and Y Motivated by the proof of Theoreni.l, we also
mappingf : X — Y, we denote its Lipschitz constant

construct simple low-distortion embeddings of the space

by p (2(04,...n32,7) into Ly. It is convenient to work with
[ fllLip:=sup M probability measures on the tor@ instead of the grid
m;X dx(z,y) {0,1,...,n}2. One easily checks th4b, ...,n}? embeds
_ e with constant distortion int@2, (see e.g. Lemma 6.12
If fis one to one then its distortion is defined as in [30]). Every u € 2, can be written in the Fourier
. _ basis as
dist(f):=fllip - I/~ Lip
_ g U@ dx (x,y) p= Y luv)ew, @)
by dx(@y) oy dy (F@), [()) (w ez
TFY TF£Y
where
The smallest distortion with whick can be embedded into 5 | zmilautby)
Y is denotedy (X), i.e., V(a,b), (u,v) € Zy,, ewp(a,b)i=e™ 7,
cy (X):=inf {dist(f) : f: X < Y is one to one}. and )
2 =~ —_ —qaq. —
WhenY = L, we use the shorter notatian (X) = V(u,v) € Zyy, filu,v):=—5 > . #a, b)eww(~a, =b).
¢p(X). Thus, the parameten(X) is the Euclidean dis- (a,b)€Z
tortion of X ande, (X) is the L, distortionof X. Observe that for. = 2¥ + 1, k € N, the decompositior2)
Our main result bounds from below thg, distortion  ¢an be computed in tim@ (n? log ) using the fast Fourier
of the space of probability measures on théy 7 grid,  transform B7]. Motivated in part by the results ¢8| (see
equipped with the transportation cost distance. also [,33)), we define
Theorem 1.1. ¢1 (P01, .32, 7) = 2 (VIogn). p2min

AM = Z 2miu 27miv ’2

) . . 2 2miv
After reducing the problem to a functional analytic ques- (u,0) €220 {(0,0)} 1€ ™ —1| +|e n o—1

tion, our proof of Theorerd.1lis a discretization of a the-

orem of Kislyakov from 197525]. We attempted to make i, ) - eu, ®)

the presentation self contained by presenting here appropriand

ate versions of the various functional anlaytic lemmas that ariv

are used in the proof. By = Z — ¢ — ; 5
For readers who are more interested in the minimum (uw)eZ2\{(0,0)} 1€ * — 1"+ e =" =1

cost matching metriclf), we also prove the following lower ~

bound: Ji(u, v) - €yo- )

Theorem 1.2 (Discretization). For arbitrarily large inte- Theorem 1.4. The mapping: — (A, Bp) from (“@Z?L’T)

gersn there is a family?% of disjoint n-point subsets of to 1L1 (Z3) @ L1 (Z3) is bi-Lipschitz, with distortion
{o,1... ,n3}2, with || < n@Uoslogn) sych that anyl.; (log ).
embedding o, equipped with the minimum weight match- TheO(log n) distortion in Theorerd.4 matches the best
ing metricr, incurs distortion known distortion guarantee proved (] [7]. But, our em-
bedding has various new features. First of all, it i;naar
Q (wlog log log n) =Q (x/log log log |@\) mapping into a low dimensiondl, space, which is based
on the computation of the Fourier transform. It is thus very
A metric spaces X, dx) is said to embed into squared fast to compute, and is versatile in the sense that it might
Ly, or to be of negative type, if the metric spaC¥, v/dx) behave better on images whose Fourier transform is sparse
is isometric to a subset df;. Squaredl, metrics are im-  (we do not study this issue here). Thus there is scope to
portant in various algorithmic applications since it is pos- apply the embedding on certain subsets of the frequencies,
sible to efficiently solve certain optimization problems on and this might improve the performance in practice. This is
them using semidefinite programming (see the discussionan interesting “applied” question which should be investi-
in [3,124]). It turns out that planar Earthmover does not em- gated further. For lack of space, the proof of Theorkm
bed into any squarefl, metric: will be deferred to the full version of this paper.



2. Preliminaries and notation

that Lipy(X)* = .#% ., in the sense that every bounded
linear functional onLip,(X) is obtained in this way, and

For the necessary background on measure theory we refor everyyu € ///;Oc,w

fer to the book/88], however, in the setting of the present
paper, our main results will deal with finitely supported

measures, in which case no background and measurabilty

assumptions are necessary. We also refer to the btk [
for background on the theory of optimal transportation of
measures. LetX,dx) be a metric space. We denote by
M x the space of all Borel measures anwith bounded
total variation, and by?x C .#x the set of all Boreprob-
ability measures oX. We also Iel;///;(r C #x be the
space ohon-negativeneasures oX with finite total mass,
and we denote by#$ C .#x the space of all measures
w € Mx with 4(X) = 0. Given a measurg € #x, we
can decompose it in a unique wayas- u — u~, where
pt,u~ € 4 are disjointly supported. Ifi,v € 5
have the same total mass, i.e(X) = v(X) < oo, then
we letTI(u, v) be the space of atlouplingsof i andv, i.e.

all non-negative Borel measureon X x X such that for
every measurable bound¢d X — R,

[ d@ane = [ i)

and

/ f(y)dﬂ(x,y)=/ f(y)dv(y).
XxX X

[l = [l Lipg (x)~
::sup{/X fdp: f € Lipog(X), || fllLip < 1}.

(We note that this identity amounts to duality of linear pro-
gramming.)

3. Proof of Theorem/1.1

Fix an integem > 2 and letX = {0,1,...,n — 1}2,
equipped with the standard Euclidean metric. In what fol-
lows, for concretenesgip,:=Lip,(X) is defined using the
base point:y = (0,0). Also, for ease of notation we denote
M = My .. Observe thakip, and.# are vector spaces of
dimensiom? — 1, and by Kantorovich dualitylip; = .#
and./* = Lip,.

Assume thatf’ : &y — L, is a bi-Lipschitz embed-
ding, satisfying for all two probability measurggsr €
Px,

T(wv) <[[F(p) = F@)lh < L-7(p,v).  (6)

Our goal is to bound. from below. We begin by reduc-

Observe that in the case of finitely supported measures, thidnd the problem to the case ¢ihear mappings Recall

condition translates to the standard formulation, in which
we require that the marginals efarey andv, i.e.

Vo,y € X, Z mw(z,z) = plx) A Z (z,y) = v(y).

zeX zeX

The transportation cost distancéetweeny and v, de-
noted here byr(i,v) = 7(x,4,)(n.v) (@and also referred
to in the literature as the Wasserstéiristance, Monge-
Kantorovich distance, or the Earthmover distance), is

(1, v)
:=inf {/XXXdX(amy) dr(z,y): eIy, V)} (5)

Forp € 4%, pt(X) = p (X), so we may write
llge|l-:=7 (™, ™). This is easily seen to be a norm on the
vector space/Zy, = {u € 4% : |u|- < oo}

Fix somez, € X, and letLip,(X) = Lip, (X) be
the linear space of all Lipschitz mappings: X — R
with f(zo) = 0, equipped with the norn - ||Lip (i-€.
the norm of a function equals its Lipschitz constant). Any
p € A% . can be thought of as a bounded linear functional
on Lipy(X), given by f — [, fdu. The famousKan-
torovich duality theorenfsee Theorem 1.14 idL]) implies

that given two normed spacég, || - ||z) and (W, || - ||w),
the norm of a linear mapping : Z — W is defined
as||T|| = sup.ez o IT=lw (observe that in this case
T = [T Lip)-

Izl z
Lemma 3.1 (Reduction to a linear embedding of# into
V). Under the assumption of an existence of an embedding
F: 2y — L satisfying(6), there exists an intege¥, and
an invertible linear operatofl” : .# — (¥, with | T'|| < 2L
and [|T(u)|l1 > ||pll- for all u € # (the factor2 can be
replaced byl + ¢ for everye > 0, but this is irrelevant for
us here).

Proof. By translation we may assume that maps the
uniform measure onX to 0. For u € .# denote
le2lloo:=max,c x |u(x)|. Observe that it is always the case
that||]|co < |||+ Indeed, ifr € TI(p", 1) then

XxX

./X><X
=pH(X) = p (X) > || so-

Let B_, denote the unit ball of# . Define fory € B 4 a
probability measure) () € 22(X) by ¢(N)(I);:u($>+1_

n2

Then everyu, v € . satisfy|u — v, = 1£@=2Wll-

dr(z,y)

|z = ylladn(z,y) > /



The mappingi:=n?- Fov : B4 — L; satisfiesh(0) = 0,
IhlLip < L, and]|A(s) —h(v)[l1 > [~ vl|-. This implies
that there exists a map : .# — L, satisfying the same
inequalities. We shall present two arguments establishing
this fact: The firstis a soft non-constructive proof, using the
notion of ultraproducts, and the second argument is more
elementary, but does not preserve the Lipschitz constant.

Let  be a free ultrafilter ofN, and denote byL;)4
the corresponding ultrapower @f; (see IL2] for the nec-
essary background on ultrapowers of Banach spaces.
particular, it is shown there thaf.; )4 is isometric to an
L (o) space, for some measusg. Define fory ¢ .#,
h(p) = (j-Mu/g))j=, /%, where we set, saji(v) = 0
forv € .4 \ B.4. Then, by standard argument&,|.i, <
L and|h~!|ri, < 1. Moreover,h(.#) spans a separable
subspace ofL1)% , and thus we may assume without loss
of generality that takes values irl;.

An alternative proof (for those of us who don’t mind
losing a constant factor), proceeds as follows. For every
f e Liletx(f):[0,1] x R — {—1,0,1} be the function
given by

X)) = sign(F(s)) 11, 1 (O

1 f(s)>0,0<t< f(s),
-1 f(s)<0,0<t<—f(s),
0 otherwise.

Then||f — glls = [Ix(/) ~ x(9)l| . fo.1]xm) for everyf, g €
L, (We note here that the spagg([0, 1] x R) is isometric
toL;.) Defineh:.# — Li([0,1] x R) by settingh(u) =
lll7 - x © h(p/l|ull7) for € .2 \ {0}, andh(0) = 0.
Since for everyf € Ly, x(f) takes values ig—1,0, 1}, we
have the following pointwise identity for evepy, v € .#

+(mmTH”“)WX°h< )

[l -
1/)'
L4 ([0,1]xR)

(i) -+

ll ]~
+umn—nﬂJWM(

i) = h(w)| = Il .

v

v~
)

[l all+
+ el = lIvll-

T

(1B

)

1

@)

1

-

I
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V|-

- 1
[l 2]l -

v

+ el = vl

T

[V = plle = ||

lv = pll+-

In

It also follows from the identity{) that

W) — b ’
H () ) L1([0,1]xR)
1 v
< uwmﬂ\ L=l
Il Tl
1 1

< Do+ LIl = o

Lol
< 3LHM_V”T-

We are now in position to use a Theorem of Ri3€][
(see also13], and Corollary 7.10 in4], for softer proofs),
which implies that there is an into linear isomorphism
M — L3> satisfying|S|| < L and|S~!|| < 1. Since
A is finite dimensional, by the principle of local reflex-
ivity [26] (alternatively by Kakutani's representation theo-
rem 21, 27]), and a simple approximation argument, we
get that there exists an integ&rand an into linear isomor-
phismT : .7 — (Y satisfying||T|| < 2L and|| T 1| < 1
(the value ofN is irrelevant for us here, and indeed it is
possible to conclude the proof without passing to a finite
dimensionalL, space, but this slightly simplifies some of
the ensuing arguments. For completeness we note here
that using a theorem of Talagran®C[ we can ensure that
N = O(n?logn)). O

From now on letl’ : .# — (¥ be the linear operator
guaranteed by Lemn& 1. SinceT is an isomorphism, the
adjoint operatorT™* : (N — _#* = Lip, is a quotient
mapping, i.e.||T*|| < 2L and the image of the unit ball of
¢X underT* contains the unit ball ofip,.

The rest of the proof follows Kislyakov's2E] and is a
discretization of his argument. The idea is to compdse
with a map.# which is the imaginary part of the discrete
two dimensional Fourier transform (see the exact definition
below), seen as a map frofrip, to ¢>(X), and to prove
two properties of the composed map: Using the fact that
|IT*]] < 2L we shall show that# o T* is order bounded
with good bound, that is,

F (T*(Bex)) C{y € l(X) : Jy| < x},

for somez € /5(X) such that|z||s < 4Ln. Then, using
the quotient property of ™, we find a family of functions
{#i € By }ier such that if7 (T*(¢;)) < xforalli € I
then||z||2 > cn+/logn, for some universat > 0.

We now define two more auxiliary linear operators. The
first is the formal identityld : Lip, — W, wherelV is the
space of all functiong : X — R with f(0) = 0, equipped



with the (discrete Sobolev) norm

n—1n—2

D fGi+1) -

=0 j7=0
n—1ln—2

+Y > IfG+1,4) -

§=0 i=0

[1fllw f(i,9)]

[ 9)

n—2
+n Y [ £(i+1,0) = £(i,0)]
=0

n—2
+n Y 10,5+ 1) = £(0,5)].
j=0
The second operator is also a formal identity (discrete
Sobolev embedding) : W — ¢5(X), where the Euclidean
norm on/¢y(X) is taken with respect to the counting mea-
sure onX. The final operator that we will use is the imagi-

nary part of the Fourier operator, already referred to above,

which we denote byZ : ¢5(X) — ¢5(X). Itis defined for

f: X —=Rhby
y(f)( ( Z f k. [ zm(uk+u/z)>
(k,0)eX
27 (uk + vf)
f(k,O)s () .
HZ);X "

The following lemma summarizes known estimates on the
norms of these operators.

Lemma 3.2 (Operator norm bounds). The following op-
erator norm bounds hold true:
o [l <4n(n—1). eS| < 3.

Proof. The first statement means that for evgry X —
R with f(0) = 0, | fllw < 4n(n — 1) f||Lip, Which is

|71l < .

obvious from the definitions. The second assertion is thatery Yy, .

[fll2 < 3l fllw. This is a discrete version of Sobolev's
inequality B3] (with non-optimal constant), which can be
proved as follows. First of all, sincg(0) = 0, for every
(u,v) € X,

|f (u, )|

k=0
v—1
+ [f(07€+1)_f(07€)]
£=0
n—2
< [f(k+1,0) = f(k,v)|
k=0
n—2
+ ) 1F(0,64+1) = £(0,0)]
£=0
= A(v). 8)

Analogously,

|f(u,v)| fu, )]

Z|fu€+

+Z\f(k+1,0)ff(k,0)l

B(u).

©)

Multiplying (8) and ), and summing ovek , we see that

175 < > A@Bu
(u,v)eX
- (Ew) )
v=0 u=0
1 n—1 n—1 2
< 4<§A(v)+§B(u)>

1
1%

The final assertion follows from the fact that the system

of functions{(k,é) e } are orthogonal
(u,w)eX

in ¢5(X) (the space of complex valued functions &f),
and have norms bounded hy O

We now recall some facts related to absolutely summing
operators on Banach spaces (we refer the interested reader
to [4Q, 42] for more information on this topic). Given
two Banach space¥ and Z, the ; norm of an operator
A Y — Z, denotedr;(A), is defined to be the small-
est constanf > 0 such that for everyn € N and ev-
.., Ym € Y there exists a norr linear functional
y* € Y* satisfying

S I Ayilz < Kyt ()l
j=1 j=1

(10)

This defines aideal normin the sense that it is a norm, and
for every two operator® : W — Y and@ : Z — V we
haver; (QAP) < ||Q| - 71(A) - ||P]|. Observe that it is
always the case that (4) > || A]|.

Lemma 3.3. Using the above notation we have that
m1(Id) < 4n(n — 1). Therefore, Lemma.2 implies that

m(F oSoldoT*) <4nL.

Proof. Fix m functions f1, ... X — R such that

fm



f1(0) =--- = £,,(0) = 0. Then
m n—1ln—2 m
SUfillw =D 3> (1fi(sit+1) = fils, )]
Jj=1 s=1t=0 j=1
+fit+1,8) = f(t,8)])
n—2 m
1) 3 D (1£50.6+1) = £5(0.0)
t=0 j=1
(4 1,0) = £5(£,0)])
< 4dn(n-1)
{0<I§1<az( 1Z|f3 8, t+1 fj(s>t)‘7

0<t<n—2J=1

max

m
; 1
0<s5<n— 1Z|fj(t+ »5)

0<t<n—2J=1

—fj(t78)|}~

Assume without loss of generality that the maximum above
equalsy i, | f(so,to + 1) — fi(s0,t0)|, for some0 <
so <n—1and0 <ty < n— 2. Consider the measure=
—O(so,t0) € ~# = Lipy. One checks thaful| . =
fi(so,t0)| = 220, \#(fj)g

6(807t0+1)m
Land} .~ [fj(s0.to +1) —
implying the required result.

The fundamental property of the norm is the Pietsch
Factorization Theorem (sedd]), a special (particularly
easy) case of which is the following lemma. We present
a proof for the sake of completeness.

Lemma 3.4 (Pietsch factorization). Let Y be a Banach
space, and fix a linear operatot : /Y — Y. Then there
exists a probability measure on {1,..., N} and a linear
operatorR : Ly(c) — Y such thatA = Ro I, wherel is

the formal identity fron?2) to L, (o), and||R| = 71 (A).

Proof. Recall that A (N — Y satisfies for all
Ti,...,Tm eﬁé\fc,
> llAzy| < 7T1(A)' _sup Z\l‘ ;)|
=1 (fN)
H»L lI=
- ‘ 1I<I}ca<XN Z e (B, (1)

where the last equality follows from the fact that the eval-
uation functionals: — (k) are the extreme points of the
unit ball of £ = (¢X)".

Denoting byes, . .., ex the standard basis & we de-
duce from|L1) thatm(A) > Z;V:l | Ae;||. Define a prob-

ability measurer on {1,..., N} by o(k) = %.
j=11141€5

Then for everyr € ¢4 we see that

| Az]]

IN

<

.....

Defining Rz = Az, this implies the required result. [

From now on letR ando be the operator and probability
measure correspondingtb= % o0SoldoT™ in Lemme3.4.
ThusRol = .Z#oSoldoT* and||R|| < 4nL. Schematically,
we have the following commuting diagram:

N T Lipy e W2 (%) s £5(X)
\ R
Li(o)

We need only one more simple result from classical Ba-
nach space theory. This is a special case of a more general
theorem, but we shall prove here only what is needed to
conclude the proof of Theorefn1.

Lemma 3.5. Let R : Li(oc) — {2 be a linear operator.
Fix f : {0,...,N} — [0,00). Then there ist € ¢, with
non-negative coordinates such that

R({g:{0,....N} = R: Vj, [9(5)| < f(5)})

C{yely: Yy, |y;| < )},

and||z|la < IR - || fl| L, (o)

Proof. R is given by a matrixXR;; : i =1,...,N, j €
N). In other words, for every, (Rf); = > ;_; Ri; f(9).
Observe that using this notation,
o 1/2
2
IR]| = max, ( 72 ZRij) (12)
Jj=1
Fix g € L1(o) such thatforali € {1,...,N}, |g(3)| <

f(@). Then for ally,

N
Z Ri;|f(i):=x;.



Now, But
N 27172 (167L)? > |||3
Izl = Z(Z Rij|f(i ) SE
j=1 \i=1 2 le“*"
N . 1/2 u,v_l
n- 2
< Z(Z Ry 1(0) ) > 3 [Rofwu,u)(u,v)
i=1 \j=1 w,v=1
= o > —
; ( g ) B uvzl u+v
< HR”'”fHLl(a)» S logn
- 16’
where we have used?2). O

where the last bound follows from comparison with the
appropriate integrals. The proof of Theordni is com-
plete. O

We are now in position to conclude the proof of Theo-
reml1.1.

4. Discretization and minimum weight match-
ing

In this section we deduce TheoreinZ from Theo-
rem1.1l. The main tool is the following theorem of Bour-
gain [6], which gives a quantitative version of Ribe’s theo-
rem 36).

Proof of Theorerd.1. For (u,v) € {1,...
Yuw: X — Rby

,n — 1}2 define

Pu,o(k, )= Theorem 4.1 (Bourgain’s quantitative version of Ribe’s
theorem [6]). There exists a universal consta6t with
the following property. Lel” and Z be Banach spaces,
dim(Y) = d. Assume that” is an e-net in the unit
ball of Y, f : # — Z satisfiesdist(f) < D, and that
log log% > Cdlog D. Then there exists an invertible lin-

ear operator?’ : Y — Z satisfying||T|| - | T~} < C - D.

1 ) (27r(uk—|—v€))
- Sin .
v n
Theng,,,(0) = 0 and one computes thap,,, ||Lip < 4.
By the fact that7* maps the unit ball o’y onto the
unit ball of Lip,, it follows that there isp,, , € ¢X with
[Puwlloe < 2Z andT*¢y,, = @u.n. Now, the functions
\I(q&u v)| € Li(o) are point-wise bounded by the constant
, S0 by Lemma3.5 there exists: € ¢5(X) of norm at
most 4||R|| < 167L such that{ R(I(¢y,,))| is bounded
pointwise byz.

Proof of Theorerd.2. Observe that for every € .#, the
measurelﬁ%—x) (prepT)isinll(ut, u~). Thus

Note that 1 / i _
pllr < /s z — yll2dp™ (@)dp~ (y
[l X XXxH ll2dp™ (z)dp (y)
< V2-(n—1)-pt(X)
o I(¢uw)(u,v) =F 0 SoldoT*(duw)(u,v) < 2n - [supp(pt)] - [|plloo
= J(% v)(u,v) < 203 o
1 1 . o [ 2m(uk + vf)
= 2 Z uto oM n On the other hand, as we have seen in the proof of
(k,6)eX < ||gl+- It follows
1 el priZuk g 20l from these consideration, and Theoreing and4.1, that
T n2(u+v) ];) i ( e e for every integetN > ¢ " "*'*"  the set of probability

measuresy C Py consisting of measurgs € & such
that for allz € X, u(z) = k/N for somek € {0,..., N},
satisfiesc; (%, 7) = Q (vlogn). We pass to a family of

subsets as follows.

determined later.

Led/ be an integer which will be
For every € % we assign a subset



S, € {0,...,nM}? as follows. For everyu,v) € X =

{0,...,n—1}2,if u(u,v) = k/N, wherek € {0,...,N},

thenS,, will contain arbitraryk distinct points from the set
2

(uM, v M) + {0, " [\/ﬂ} . ProvidedM > 4v/N, the

sets{S, },c» thus obtained are disjoin¥ point subsets

of {0,...,nM}?, and it is straightforward to check that

the minimum weight matching metric ofS,,},c# is bi-
Lipschitz equivalent t¢%/, 7) with constant distortion. O

5. Uniform and coarse nonembeddability into
Hilbert space

In this section we prove Theorefin3 We shall prove,
in fact, that the spaceZ| ,)2,» does not embed uniformly
or coarsely intal,. We first recall the defintions of these
important notions (se@|30] and the references therein for
background on these concepts). I(&f, dx) and (Y, dy)
be metric spaces. Fgr: X — Y andt > 0 we define

Q(t) = sup{dy (f(2), f(y)); dx(x,y) <1},

and

wy(t) = inf{dy (f(z), f(y)); dn(z,y) = t}.

Clearly€)y andw; are non-decreasing, and for everyy <
X!

wi (dx (z,y)) < dy(f(2), f(y)) < Qf (dx(z,y)).

With these definitions, f is uniformly continuous if
limy; o Qf(t) = 0, andf is said to be a uniform embedding
if fisinvertible and bottf andf~! are uniformly continu-
ous. Also,f is said to be a coarse embeddinfif(t) < oo
forall ¢t > 0 andlim;_, o, wy(t) = co.

In what follows we will use the following stan-
dard notation:
{(Z;,] - HZJ-)};; the Banach spacé@j’;l Zj)1 is the
space of all sequences= (z;)%2, € [[;2, Z; such that
Yorei lzillz; < oo Ifforeveryj € N, Z; = 7y,

(@;; Zj){

1Z[l:=

we writel1(Z7) =

Theorem 5.1. The space{ e }00 do not ad-

mit a uniform or coarse embeddmg info, W|th moduli
uniformly bounded im, i.e., there do not exist increas-
ing functionsw, 2 : [0,00) — [0,00) which either sat-
isfy lim;_o w(t ) = limy_o Q(¢) = 0, or lim;_, w(t) =

oo, and mappingsf, : .y, .. — L2, such that
w(llp = vli-) < falw) = fa)ll2 < Qllp = vl7) for
all u,v € A, 52 andalln.

Given a sequence of Banach spaces

Proof. If this is not the case then by passing to a limit along
an ultrafilter we easily deduce thaé’o 112, uniformly or
coarsely embeds in an ultraproduct ot Hilbert spaces and
thus inL, (seell2,/13]). By a theorem of Aharoni, Maurey
and Mityagin [ in the case of uniform embeddings, and
a result of Randrianarivon'8E] in the case of coarse em-
beddings, this implies that%/0 112 is linearly isomorphic to
a subspace af,. By a theorem of Nilgin [37] it follows
that ///[071]2 is isomorphic to a subspace &f _. for any

€ (0,1). We recall that it is an open problem posed by
Kwapien (see the discussion i87, 4]) whether a Banach
space which linearly embed intly, is linearly isomorphic
to a subspace af;. If this were the case, we would have
finished by Theorerd.l Since the solution of Kwapien’s
problem is unknown, we proceed as follows.

Let {S] }Joo;l
with

be a sequence of disjoint squaresg(ni]?

min
acS;, beSy

d(S;, Sk) = lla = bl

> max {diamS;, diamSy}. (13)

Consider the linear subspateof ///% 1]2 consisting of all
measureg satisfyingsupp(u) € ;2 S; andpu(S;) = 0

for all 5. It is intuitively clear that in the computation of
lee|l- for u € Y the best transportation leaves each of the
S; invariant; i.e., it is enough to take the infimum [8)
only over measures € II(u,v) which are supported on
U°° (S; x S;). This is proved formally as follows: Fix
1 €Y and writep = 37, 15, wheresupp(u;) € S; and
wi(S;) =0forallj e N, We claim that

(oo}

lellio 2 = D Nasllsr- (14)
j=1
If mj € T(pf, py ) thenm:=3"22 ;€ I(u*, p™). Thus

el < 2252 llujlls; - To prove the reverse in-
equality taker € TI(p™, ™). For everyj = 1,2,...
define a measure; on S; as follows: ForA C S; set

oj(A):=n (A X U Sk). Thus, in particular, by our as-
sumption L3) for everyy € S;,

/ Iz — ylladoy(z) = / lz — ylladn(z, 2)
Sj SJXUk;é]‘ Sk

g/ lz — 2|pdn(z, 2). (15)
S‘><U,c¢7



Writing

- = 1
=T - 1U?.;1(Sj><sj) +Z O‘j(Sj) c0; Q0;
Jj=1 -

oo

1
— W~1U§?¢;1(ijsj)+z
j=1T (Sj X Uk;&j Sk

) 'O'j@O’j,

it follows from our definitions thatr € II(u*, ™) and
7 is supported ot JiZ, (S; x S;). Moreover, for eacly,
7y =7ls; € (u, p; ), so that

o0 o0
S llslls, e <0 / & — yll2d; (. )
j:1 ]:1 SjXSj

- / Iz — ylladn(z,y)
U521 (S5 xS;5)

T pp—

5207 (85 % Ungy S)

- / & = yllado (z)do; (y)
XS

J J

=
ING

/ 2 — ylladn(z, )
U521(S;xS;5)

+Z/ |z — z||2d7(z, 2)
j=1 S XUk#j Sk

/ I~ ylladn(z.v).

(Uszy 85)x (U2, 85)

This concludes the proof ofL4). It follows thatY is iso-
metric to (P, ~, .43, ,),, which in turn is isometric to

£y (///[%,1]2,7)- Now, Kalton proved in22] that if for some
Banach spacg’, ¢,(X) is isomorphic to a subspace b,

then X is isomorphic to a subspace bf and we finish by
Theoreml.1 O

Proof of Theorerd.2 Assume for the sake of contradic-
tion that there exist€’ < oo such that for alln € N,

c2 (Po,..ny2,V/7) < C. By the proof of Lemmé3.1
we know that the unit ball of#;, ... )2 - is isometric to
a subset of Z; . 12, 7). Thus by our assumption there
exist mappingsf,, : .#{o,...n}> — L2 such that for every
JRRS %{0,...@}2 with HNH‘N ”V”T <1,

VI < i) = Fu)l2 < C- /T —l7 - (16)

Let  be a free ultrafilter oiN. Definefn s Mo,y —
(L2)a by fu(p) = (\/5 fn(ﬂ/]))joil /% . Inequal-

ities (16) imply that all u,v € A, . ny> satisfy
VI =Tz < 1Fa) = Fa)llzaye < C -Vl =0l

Since the ultrapower(Ls)4 is isometric to a Hilbert
space (seell]), we arrive at a contradiction with Theo-
rem5.1 O

Remark 5.1. We believe that Theoreii.3 can be made
guantitative, i.e. one can give explicit quantitative estimates
on the rate with whicte, (2 . .32, /7) tends to infin-

ity. This would involve obtaining quantitative versions of
the proofs inlL, 22, [35], which seems easy but somewhat
tedious. We did not attempt to obtain such bounds.

Remark 5.2. We do not know whethe@?[o,l]z , 7') admits

a uniform embedding into Hilbert space. The proof above
actually gives that for allv € (0, 1], (t@[o’l]zj,fa) does

not embed bi-Lipschitzly into Hilbert space. But, our proof
exploits the homogeneity of the functien— ¢ in an es-
sential way, so it does not apply to the case of more general
moduli.
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